
classesoop User Contributed Perl Documentation classesoop

NAME
classesoop − Object Oriented Primer

DESCRIPTION
If you couldn’t really explain the difference between a class and an object or are confused about methods and
attributes then this primer is for you. We presume no prior object experience covering the main concepts and
terms necessary to begin object−oriented programming.

Beyond this primer you can find more in the Classes Tutorial (classestut), the Classes Cookbook (classescb),
the Classes FAQ (classesfaq), and the Classes Reference (classes). Later you may decide you want to read
the older perlobj, perltoot, and friends.

What is an object anyway?
You probably already know the answer to that intuitively. An object is just a thing. Things do stuff; they
perform operations using different methods. Things also have characteristics or attributes, some you can see
and some you can’t.

In the real−world objects are grouped together by their similarities into classes. Biologists really get this. The
rest of us can also if we think about objects we know.

Objects on the Road
One universal class of objects that we most all have experience with is Vehicle. A popular subclass of
Vehicle is the Motorcycle.

A black chromed American V−Twin motorcycle idling at an intersection is a thing (of beauty), an object. So
is a sleek Japanese metric motorcycle doing 200 KPH. Both are motorcycles, a class of vehicles found on the
roadway—another (bigger) object.

The roadway might contain all kinds of motorcycles and other vehicles interacting with one another. Each
vehicle belongs to a particular group, a subclass of vehicles. Each has a color, size, weight, number of
wheels, engine type, and other static recognizable attributes. Some of the attributes are really attributes of
their parent class, color for example. All vehicles have at least some basic color. Current speed, gear, fuel
level, choke, and air pressure are dynamic attributes some of which all vehicles have and others only certain
vehicle subclasses have.

Motorcycles can move, no question about that—that’s an operation all (working) vehicles can perform.
From the outside, we riders don’t see much that reveals the how a motorcycle moves. Most of us don’t really
care about the method the engine uses to make it go—so long as it does go. We fill the tank, enjoy the sound
of the engine, sometimes smell the exhaust, but we don’t know what is going on internally—unless we take
it apart.

When we do take apart a few engines we see that they can be quite different—that they have different
implementations and methods to do pretty much the same thing, make the bike move. The complexity of any
engine can be broken down into the parts that make up the engine—the objects that compose it—and how all
those parts work together—how the aggregation of objects collaborate to fulfill the ’move’ operation.

If a part breaks, we replace it with another that will fit—that has the same interface. In fact, we can replace
stock parts like the pipes or air intake with more powerful ones so long as the interface is the same.

Objects in Programming
Object−oriented programming is nothing more than putting these real−world concepts "from the road" into
practice when programming. OO helps make sense of otherwise complex systems by breaking them down
into their fundamental parts, describing how those parts work with one another in collaboration, and
aggregating them together into bigger parts. This is why OO is so popular and important to the enterprise.

Technically speaking OO is not much more than creating code packages (classes) of variables (attributes)
and functions (operations, methods). Motorcycle is a class. So is Engine, Throttle, Car, or Vehicle. A specific
instance of a Motorcycle is a motorcycle object. That motorcycle instance might have different attribute
values at different times but it is still a Motorcycle. To create a motorcycle we have to construct it from some

22−Nov−2006 1

classesoop User Contributed Perl Documentation classesoop

sort of Motorcycle class specification.

Methods and Operations − What does this thing do?
What should our Motorcycle do? Most agree this question begins the easiest approach to OO
design—especially when designing a whole system of classes. The question really is what responsibilities
does this class have? Writing this up on cards or in UML Entire methodologies, diagramming languages, and
tools have been created around just this step. [The Unified Markup Language (UML) is the lingua franca of
OO.] For now we care only about our simple Motorcycle class:

 startup
 idle
 shift
 speedup
 slowdown
 turn
 shutdown

Many of these are actually operations that all vehicles share and fulfill for their users with different methods.

You might have noticed the terms method and operation used interchangably. Chances are you will hear
coders say method when they really mean operation and architects sometimes say operation when they mean
method.

Technically a method is an implementation of an operation. This actually matches the more common
real−world definitions of those terms as well. method has come to mean both in OO programming lingo. You
will still find operations used in UML diagrams and high−level architect−speak, however. You’ll also
probably hear coders raised on nothing but OO refer to procedures, functions, or subroutines as ubiquitous
methods.

Attributes − What does this thing look like from the outside?
Attributes tend to fall out while designing what a class does In fact, if we have designed the methods and
interface really well we might not have a single public attribute in our class. Why? Because well−behaving
methods take care of their own work using private variables and attributes to get it done. The public is never
involved. In the case of our Motorcycle, however, there are a few attributes that the user must or can set
directly:

 key_position
 choke
 kill_switch
 color
 license_plate

And a few that the user can observe but that cannot be directly set:

 speed
 odometer
 fuel_level
 gear

Grouping Methods and Attributes
Many of the operations and attributes described for the Motorcycle class actually apply to the Vehicle class
even though the Motorcycle implements them differently. In OO there are several design approaches to
pulling these out into a Vehicle.

Inheritance
One is to define an abstract Vehicle class and make Motorcycle a subclass that inherits from Vehicle.
Each of the operations is declared as abstract to show that any subclass must implement its actual
method. There is single inheritance where classes can only inherit from a single parent and multiple

22−Nov−2006 2

classesoop User Contributed Perl Documentation classesoop

inheritance where multiple parents can be inherited. Biologists are also familiar with the complexity of
mixing genetic material in multiple inheritance. The same is true for OO programming. Yet single
inheritance tends to slow things down as method calls are propogated through the inheritance tree.

Interfaces
Interfaces and APIs are just groups of methods abstract or otherwise that any class fulfilling the
interface agrees to implement. This handles the propagation issue from inheritance, but adding a
method to an interface doesn’t automatically add it to all the classes that claim to implement the
interface.

Mixins
Mixins are relative newcomers to OO and are not commonly known even among long−time object
programmers. Mixins are, nevertheless, a powerful balance between inheritance and interfaces. Mixins
provide a powerful replacement for inheritance that grants the flexibility of inheritance to add code in
an organized way that is automatically propogated to all the users of the mixin but without the bloat
and call proporation issues of inheritance.

A mixin in the strict sense cannot be considered a class nor an interface. Implementations of mixins
vary between languages, but the idea is the same. Mixins have methods and attributes that classes can
"mix into" themselves, like mixing different groups of ingredients into vanilla ice cream to create a
new flavor. Effectively it is as if the class using the mixin inherited it but method calls are not
propogated through an interitance tree because every class that uses the mixin gets its own direct
references to the methods, more or less. And, unlike a simple interface specification, the classes
actually get something more than a mandate about what they must implement.

Summary
Object−oriented programming provides an effective way to simplify complex problems and systems into
their finite components. Processes are then modeled as interactions and collaborations between them.
Developers can then focus on the responsibilities and internals of each component.

AUTHOR
Robert S. Muhlestein (rmuhle at cpan.org)

COPYRIGHT AND LICENSE
Copyright 2005, 2006 Robert S. Muhlestein (rmuhle at cpan.org) Some rights reserved. This document is
licensed under a Creative Commons Attribution 2.5 License (http://creativecommons.org/licenses/by/2.5/).

See classes for copyright and licensing information of the classes pragma module itself.

22−Nov−2006 3

	classesoop
	NAME
	DESCRIPTION
	What is an object anyway?
	�Objects on the Road�
	Objects in Programming
	Methods and Operations - �What� does this thing do?
	Attributes - What does this thing look like from the outside?
	Grouping Methods and Attributes
	Inheritance
	Interfaces
	Mixins

	Summary

	AUTHOR
	COPYRIGHT AND LICENSE

