
class MongoDB::Client

Class to define connections to servers

Table of Contents
1 Synopsis
2 Description
3 Readonly attributes
3.1 read-concern
4 Methods
4.1 new
4.1.1 read-concern
4.1.2 uri
4.2 nbr-servers
4.3 server-status
4.4 client-topology
4.5 select-server
4.6 database
4.7 collection
4.8 cleanup

package MongoDB { class Client { ... } }

Synopsis
my MongoDB::Client $client .= new(:uri<mongodb://>);
if $client.nbr-servers {
 my MongoDB::Database $d1 = $client.database('my_db1');
 my MongoDB::Collection $c1 = $d1.collection('my_cll1');

5. my MongoDB::Collection $c2 = $client.collection('my_db2.my_cll2');
}

Description
This class is your most often used class. It maintains the connection to the servers specified in
the given uri. In the background it herds a set of MongoDB::Server objects.

Readonly attributes

read-concern

has BSON::Document $.read-concern;

The read-concern is a structure to have some control over the read operations to which server the
operations are directed to. Default is an empty structure. The structure will be explained
elsewhere.

Methods

new

submethod BUILD (
 Str:D :$uri, BSON::Document :$read-concern,
)

Create a MongoDB::Client object.

Note. It is important to keep the following in mind to prevent memory leakage. The object must be
cleaned up by hand before the variable is reused. This is because the Client object creates some
background processes to keep an eye on the server and to update server object states and
topology.

my MongoDB::Client $c .= new(...);
... work with object
$c.cleanup;

Some help is given by the object creation. When it notices that the object (self) is defined along
with some internal variables, it will destroy that object first before continuing. This also means
that you must not use another MongoDB::Client object to create a new one!

my MongoDB::Client $c1, $c2;

first time use, no leakage
$c1 .= new(...);

5.
In this proces $c1 will be destroyed!!
$c2 = $c1.new(...);

This is ok however because we want to overwrite the object anyway

10. $c2 .= new(...);

And this will result in memory leakage because $c2 was already defined.
$c2 = MongoDB::Client.new(...);

read-concern

Read concern will overwrite the default concern.

uri

Uri defines the servers and control options. The string is like a normal uri with mongodb as a
protocol name. The difference however lies in the fact that more that one server can be defined.
The uri definition states that at least a servername must be stated in the uri. Here in this package
the absence of any name defaults to localhost. See also the MongoDB page to look for options
and definition.

'Uri examples'
Example uri Explanation

mongodb:// most simple specification, localhost
using port 27017

mongodb://:65000 localhost on port 65000

mongodb://:56,:876 two servers localhost on port 56 and 876

mongodb://example.com server example.com on port 27017

mongodb://pete:mypasswd@ server localhost:27017 on which pete
must login using mypasswd

mongodb://pete:mypasswd@/mydb same as above but login on database
mydb

mongodb:///?replicaSet=myreplset localhost:27017 must belong to a replica
set named myreplset

mongodb://u1:pw1@nsa.us:666,my.datacenter.gov/nsa/?
replicaSet=foryoureyesonly

User u1 with password pw1 logging in
on database nsa on server nsa.us:666
and my.datacenter.gov:27017 which
must both be member of a replica set
named foryoureyesonly.

Note that the servers named in the uri must have something in common such as a replica set.
Servers are refused when there is some problem between them e.g. both are master servers. In
such situations another MongoDB::Client object should be created for the other server.

The options which can be used in the uri are in the following tables. See also this information for
more details.

Section Impl Use

Replica set options

replicaSet done Specifies the name of the replica set, if the mongod is a member
of a replica set.

Connection options

https://docs.mongodb.org/v3.0/reference/connection-string/
https://docs.mongodb.com/manual/reference/connection-string/#connection-string-options

ssl 0 or 1. 1 Initiate the connection with TLS/SSL. The default value
is false.

connectTimeoutMS The time in milliseconds to attempt a connection before timing
out.

socketTimeoutMS The time in milliseconds to attempt a send or receive on a socket
before the attempt times out.

Connect pool options

maxPoolSize The maximum number of connections in the connection pool.
The default value is 100.

minPoolSize The minimum number of connections in the connection pool. The
default value is 0.

maxIdleTimeMS The maximum number of milliseconds that a connection can
remain idle in the pool before being removed and closed.

waitQueueMultiple A number that the driver multiples the maxPoolSize value to, to
provide the maximum number of threads allowed to wait for a
connection to become available from the pool.

waitQueueTimeoutMS The maximum time in milliseconds that a thread can wait for a
connection to become available. For default values, see the
MongoDB Drivers and Client Libraries documentation.

Write concern options

w Corresponds to the write concern w Option. The w option
requests acknowledgement that the write operation has
propagated to a specified number of mongod instances or to
mongod instances with specified tags. You can specify a
number, the string majority, or a tag set.

wtimeoutMS Corresponds to the write concern wtimeout. wtimeoutMS
specifies a time limit, in milliseconds, for the write concern. When
wtimeoutMS is 0, write operations will never time out.

journal Corresponds to the write concern j Option option. The journal
option requests acknowledgement from MongoDB that the write
operation has been written to the journal

Read concern options

readConcernLevel The level of isolation. Accepts either "local" or "majority".

Read preference options

readPreference Specifies the replica set read preference for this connection. The
read preference values are the following: primary,
primaryPreferred, secondary, secondaryPreferred, nearest

readPreferenceTags Specifies a tag set as a comma-separated list of colon-separated
key-value pairs

Section Impl Use

Authentication options

authSource part Specify the database name associated with the user credentials,
if the users collection do not exist in the database where the
client is connecting. authSource defaults to the database
specified in the connection string.

authMechanism Specify the authentication mechanism that MongoDB will use to
authenticate the connection. Possible values include: SCRAM-
SHA-1, MONGODB-CR, MONGODB-X509, GSSAPI
(Kerberos), PLAIN (LDAP SASL)

gssapiServiceName Set the Kerberos service name when connecting to Kerberized
MongoDB instances. This value must match the service name
set on MongoDB instances.

Server selection and
discovery options

localThresholdMS done The size (in milliseconds) of the latency window for selecting
among multiple suitable MongoDB instances. Default: 15
milliseconds. All drivers use localThresholdMS. Use the
localThreshold alias when specifying the latency window size to
mongos.

serverSelectionTimeoutMS done Specifies how long (in milliseconds) to block for server selection
before throwing an exception. Default: 30,000 milliseconds.

serverSelectionTryOnce x This option is not supported in this driver

heartbeatFrequencyMS done heartbeatFrequencyMS controls when the driver checks the
state of the MongoDB deployment. Specify the interval (in
milliseconds) between checks, counted from the end of the
previous check until the beginning of the next one. Default is
10_000. mongos does not support changing the frequency of the
heartbeat checks.

Section Impl Use

nbr-servers

method nbr-servers (--> Int)

Return number of servers found processing the uri in new(). When called directly after new() it
may not have the proper count yet caused by delays in processing especially when processing
replicasets.

server-status

method server-status (Str:D $server-name --> ServerStatus)

Return the status of some server. The defined values are shown in the table and when it applies.

Server state When

SS-Mongos Field 'msg' in returned resuld of ismaster request is 'isdbgrid'.

SS-RSGhost Field 'isreplicaset' is set. Server is in a initialization state.

SS-RSPrimary Replicaset primary server. Field 'setName' is the replicaset name and 'ismaster'
is True.

SS-
RSSecondary

Replicaset secondary server. Field 'setName' is the replicaset name and
'secondary' is True.

SS-RSArbiter Replicaset arbiter. Field 'setName' is the replicaset name and 'arbiterOnly' is
True.

SS-RSOther An other type of replicaserver is found. Possibly in transition between states.

SS-Standalone Any other server being master or slave.

SS-Unknown Servers which are down or with errors.

SS-
PossiblePrimary

not implemeted

client-topology

method client-topology (--> TopologyType) {

Return the topology of the set of servers represents. A table of types is shown next;

Topology type When

TT-Single The first server with no faulty responses will set the topology to single. Any
new SS-Standalone server will flip the topology to TT-Unknown

TT-
ReplicaSetNoPrimary

When there are no primary servers found (yet) in a group of
replicaservers, the topology is one of replicaset without a primary. When
only one server is provided in the uri, the topology would first be TT-Single.
Then the Client will gather more data from the server to find the primary
and or other secondary servers. The topology might then change into this
topology or the TT-ReplicaSetWithPrimary described below.

TT-
ReplicaSetWithPrimary

When in a group of replica servers a primary is found, this topology is
selected.

TT-Sharded When mongos servers are provided in the uri, this topology applies. When
there is only one server, the type would become TT-Single.

TT-Unknown Any set of servers which are SS-Unknown will set the topology to TT-
Unknown. Depending on the problems of these servers their states can
change, and with that, the topology. When there is a set of servers which
are not mixable, the topology becomes also TT-Unknown. Examples are
more than one standalone server, mongos and replica servers,
replicaservers from different replica sets etc.

select-server

multi method select-server (Str:D :$servername! --> MongoDB::Server)

multi method select-server (
 BSON::Document :$read-concern is copy

5. --> MongoDB::Server
)

The first method tries to get a specific server while the second is running through a selection
mechanism using the server state and client topology.

Select a server for operations. It returns a Server object. In single server setups it is always the
server you want to have. When however selecting a server from a replicaset the server is
selected according to several rules such as read-concern, operation type (read or write) and
round trip time to the server. When read-concern is not defined, the data is taken from this Clients
read-concern. Note, this method is used internally and most of the time of no concern to the user.

database

method database (
 Str:D $name, BSON::Document :$read-concern
 --> MongoDB::Database
)

Create a Database object. In mongodb a database and its collections are only created when data
is written in a collection.

The read-concern when defined will overide the one of the Client. If not defined, the structure of
the client is taken.

collection

method collection (
 Str:D $full-collection-name, BSON::Document :$read-concern
 --> MongoDB::Collection
)

A shortcut to define a database and collection at once. The names for the database and
collection are given in the string full-collection-name. This is a string of two names separated by
a dot '.'.

When the read-concern is defined it overides the one from Client. If not defined, the structure of
the client is taken.

cleanup

method cleanup ()

Stop any background work on the Server object as well as the Monitor object. Cleanup structures
so the object can be cleaned further by the GC later.

Generated using Pod::Render, Pod::To::HTML, ©Google prettify

	class MongoDB::Client
	Table of Contents

	Synopsis
	Description
	Readonly attributes
	read-concern

	Methods
	new
	read-concern
	uri

	nbr-servers
	server-status
	client-topology
	select-server
	database
	collection
	cleanup

