
Noid(3) Batch Identifier Infrastructure Noid(3)

NAME
Noid − routines to mint and manage nice opaque identifiers

SYNOPSIS
use Noid; # import routines into a Perl script

$dbreport = Noid::dbcreate(# create minter database & printable
$dbdir, $contact, # report on its properties; $contact
$template, $term, # is string identifying the operator
$naan, $naa, # (authentication information); the
$subnaa); # report is printable

$noid = Noid::dbopen($dbname, $flags); # open a minter, optionally
$flags = 0  DB_RDONLY; # in read only mode

Noid::mint($noid, $contact, $pepper); # generate an identifier

Noid::dbclose($noid); # close minter when done

Noid::checkchar($id); # if id ends in +, replace with new check
char and return full id, else return id
if current check char valid, else return
’undef’

Noid::validate($noid, # check that ids conform to template ("-"
$template, # means use minter’s template); returns
@ids); # array of corresponding strings, errors

beginning with "iderr:"

$n = Noid::bind($noid, $contact, # bind data to identifier; set
$validate, $how, # $validate to 0 if id. doesn’t
$id, $elem, $value); # need to conform to a template

Noid::note($noid, $contact, $key, $value); # add an internal note

Noid::fetch($noid, $verbose, # fetch bound data; set $verbose
$id, @elems); # to 1 to return labels

print Noid::dbinfo($noid, # get minter information; level
$level); # brief (default), full, or dump

Noid::getnoid($noid, $varname); # get arbitrary named internal
variable

Noid::hold($noid, $contact, # place or release hold; return
$on_off, @ids); # 1 on success, 0 on error

Noid::hold_set($noid, $id);
Noid::hold_release($noid, $id);

Noid::parse_template($template, # read template for errors, returning
$prefix, $mask, # namespace size (NOLIMIT=unbounded)
$gen_type, # or 0 on error; $message, $gen_type,
$message); # $prefix, & $mask are output params

Noid::queue($noid, $contact, # return strings for queue attempts
$when, @ids); # (failures start "error:")

Noid::n2xdig($num, $mask); # show identifier matching ord. $num

Noid::sample($noid, $num); # show random ident. less than $num

Noid::scope($noid); # show range of ids inside the minter

print Noid::errmsg($noid, $reset); # print message from failed call
$reset = undef  1; # use 1 to clear error message buffer

CDL 0.423 2004-11-21 1

Noid(3) Batch Identifier Infrastructure Noid(3)

Noid::addmsg($noid, $message); # add message to error message buffer

Noid::logmsg($noid, $message); # write message to minter log

DESCRIPTION
This is very brief documentation for the Noid Perl module subroutines. For this early version of the soft-
ware, it is indispensable to have the documentation for the noid utility (the primary user of these routines)
at hand. Typically that can be viewed with

perldoc noid

while the present document can be viewed with

perldoc Noid

The noid utility creates minters (identifier generators) and accepts commands that operate them. Once cre-
ated, a minter can be used to produce persistent, globally unique names for documents, databases, images,
vocabulary terms, etc. Properly managed, these identifiers can be used as long term durable information
object references within naming schemes such as ARK, PURL, URN, DOI, and LSID. At the same time,
alternative minters can be set up to produce short-lived names for transaction identifiers, compact web
server session keys (cf. UUIDs), and other ephemera.

In general, a noid minter efficiently generates, tracks, and binds unique identifiers, which are produced
without replacement in random or sequential order, and with or without a check character that can be used
for detecting transcription errors. A minter can bind identifiers to arbitrary element names and element val-
ues that are either stored or produced upon retrieval from rule-based transformations of requested identi-
fiers; the latter has application in identifier resolution. Noid minters are very fast, scalable, easy to create
and tear down, and have a relatively small footprint. They use BerkeleyDB as the underlying database.

Identifiers generated by a noid minter are also known as ‘‘noids’’ (nice opaque identifiers). While a minter
can record and bind any identifiers that you bring to its attention, often it is used to generate, bringing to
your attention, identifier strings that carry no widely recognizable meaning. This semantic opaqueness
reduces their vulnerability to era− and language-specific change, and helps persistence by making for iden-
tifiers that can age and travel well.

BUGS
Probably. Please report to jak at ucop dot edu.

COPYRIGHT AND LICENSE
Copyright 2002−2004 UC Regents. BSD-type open source license.

SEE ALSO
dbopen (3), perl (1), <http://www.cdlib.org/inside/diglib/ark/>

AUTHOR
John A. Kunze

CDL 0.423 2004-11-21 2

