
A Consumer Library Interface to DWARF

David Anderson

1. INTRODUCTION

This document describes an interface to libdwarf, a library of functions to provide access
to DWARF debugging information records, DWARF line number information, DWARF
address range and global names information, weak names information, DWARF frame
description information, DWARF static function names, DWARF static variables, and
DWARF type information.

The document has long mentioned the "Unix International Programming Languages
Special Interest Group" (PLSIG), under whose auspices the DWARF committee was
formed around 1991. "Unix International" was disbanded in the 1990s and no longer
exists.

The DWARF committee published DWARF2 July 27, 1993.

In the mid 1990s this document and the library it describes (which the committee never
endorsed, having decided not to endorse or approve any particular library interface) was
made available on the internet by Silicon Graphics, Inc.

In 2005 the DWARF committee began an aff iliation with FreeStandards.org. In 2007
FreeStandards.org merged with The Linux Foundation. The DWARF committee dropped
its affiliation with FreeStandards.org in 2007 and established the dwarfstd.org website.
See "http://www.dwarfstd.org" for current information on standardization activities and a
copy of the standard.

1.1 Copyright

Copyright 1993-2006 Silicon Graphics, Inc.

Copyright 2007-2019 David Anderson.

Permission is hereby granted to copy or republish or use any or all of this document
without restriction except that when publishing more than a small amount of the
document please acknowledge Silicon Graphics, Inc and David Anderson.

This document is distributed in the hope that it would be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.

1.2 Purpose and Scope

The purpose of this document is to document a library of functions to access DWARF
debugging information. There is no effort made in this document to address the creation

Rev 3.17 7 November 2020 - 1 -

- 2 -

of these records as those issues are addressed separately (see "A Producer Library
Interface to DWARF").

Additionally, the focus of this document is the functional interface, and as such,
implementation as well as optimization issues are intentionally ignored.

1.3 Document History

A document was written about 1991 which had similar layout and interfaces. Written by
people from Hal Corporation, That document described a library for reading DWARF1.
The authors distributed paper copies to the committee with the clearly expressed intent to
propose the document as a supported interface definition. The committee decided not to
pursue a library definition.

SGI wrote the document you are now reading in 1993 with a similar layout and content
and organization, but it was complete document rewrite with the intent to read DWARF2
(the DWARF version then in existence). The intent was (and is) to also cover future
revisions of DWARF. All the function interfaces were changed in 1994 to uniformly
return a simple integer success-code (see DW_DLV_OK etc), generally following the
recommendations in the chapter titled "Candy Machine Interfaces" of "Writing Solid
Code", a book by Steve Maguire (published by Microsoft Press).

1.4 Definitions

DWARF debugging information entries (DIEs) are the segments of information placed in
the .debug_* sections by compilers, assemblers, and linkage editors that, in
conjunction with line number entries, are necessary for symbolic source-level debugging.
Refer to the latest "DWARF Debugging Information Format" from www.dwarfstd.org for
a more complete description of these entries.

This document adopts all the terms and definitions in "DWARF Debugging Information

Format" versions 2,3,4, and 5. It originally focused on the implementation at Silicon
Graphics, Inc., but now attempts to be more generally useful.

1.5 Overview

The remaining sections of this document
describe the proposed interface to libdwarf, first by describing
the purpose of additional types defined by the interface, followed
by descriptions of the available operations. This document assumes you are thoroughly
familiar with the information contained in the DWARF Debugging Information Format

document.

We separate the functions into several categories to emphasize that not all consumers
want to use all the functions. We call the categories Debugger, Internal-level, High-level,
and Miscellaneous not because one is more important than another but as a way of

Rev 3.17 7 November 2020 - 2 -

- 3 -

making the rather large set of function calls easier to understand.

Unless otherwise specified, all functions and structures should be taken as being designed
for Debugger consumers.

The Debugger Interface of this library is intended to be used by debuggers. The interface
is low-level (close to dwarf) but suppresses irrelevant detail. A debugger will want to
absorb all of some sections at startup and will want to see little or nothing of some
sections except at need. And even then will probably want to absorb only the information
in a single compilation unit at a time. A debugger does not care about implementation
details of the library.

The Internal-level Interface is for a DWARF prettyprinter and checker. A thorough
prettyprinter will want to know all kinds of internal things (like actual FORM numbers
and actual offsets) so it can check for appropriate structure in the DWARF data and print
(on request) all that internal information for human users and libdwarf authors and
compiler-writers. Calls in this interface provide data a debugger does not normally care
about.

The High-level Interface is for higher level access (it is not really a high level interface!).
Programs such as disassemblers will want to be able to display relevant information about
functions and line numbers without having to invest too much effort in looking at
DWARF.

The miscellaneous interface is just what is left over: the error handler functions.

The following is a brief mention of the changes in this libdwarf from the libdwarf draft
for DWARF Version 1 and recent changes.

1.6 Items Changed

The description of dwarf_srcfiles() now reflects the difference in line table handling
between DWARF5 and other line table versions. If using dwarf_srcfiles() do read its
documentation here (Section 6.14, page 117 in this version).

Added functions dwarf_crc32() and dwarf_basic_crc32() so libdwarf can check
debuglink/build-id CRC values.

Clarified the DW_DLC* value meaning here and in libdwarf.h. In the consumer/reader
case DW_DLC_READ is zero and zero is the only meaningful value to pass as the
’access’ argument of dwarf_init(and the like) consumer/reader initialization functions.
All this has been true for many years, it is only now being clearly (one hopes) stated.
(September 28, 2020)

Added dwarf_get_ranges_b() so clients reading DWARF4 split dwarf (a GNU extension)
can get the final offset of the ranges. (September 10, 2020)

All the dwarf_init*() and dwarf_elf_init*() calls have always been able to return

Rev 3.17 7 November 2020 - 3 -

- 4 -

DW_DLV_ERROR with a Dwarf_Error pointer returned too. We now update the advice
on dealing with this situation, unifying with the rest of libdwarf errors. (September 9,
2020)

The documentation of dwarf_init_path() was basically correct but omitted meaningful
mention of the dbg argument and a little wrongly described the error argument (July 22,
2020);

Added dwarf_get_debug_sup() to retrived the DWARF5 section .debug_sup content.
(July 13, 2020);

Added new functions for reading .debug_gnu_pubtypes and .debug_gnu_pubnames.
dwarf_get_gnu_index_head() dwarf_gnu_index_dealloc dwarf_get_gnu_index_block()
dwarf_get_gnu_index_block_entry() (July 9, 2020);

Added new functions for full .debug_loclists access: dwarf_get_locdesc_entry_d(),
dwarf_get_loclist_head_basics(), dwarf_get_loclist_head_kind(), and
dwarf_loc_head_c_dealloc(). For accessing certain DWARF5 new location operators (for
example DW_OP_const_type) as well as all other operators we add
dwarf_get_location_op_value_d(). Added functions allowing simple reporting of
.debug_loclists without involving other sections: dwarf_load_loclists(),
dwarf_get_loclist_context_basics(), dwarf_get_loclist_lle(),
dwarf_get_loclist_offset_index_value(), and dwarf_get_loclist_raw_entry_detail(). (June
10, 2020);

Added new functions for full .debug_rnglists support and fixed issues with DWARF5
.debug_addr index FORMs. New functions for general use:
dwarf_addr_form_is_indexed(), dwarf_get_rnglists_entry_fields_a(),
dwarf_rnglists_get_rle_head(), dwarf_dealloc_rnglists_head(), New functions for a
complete listing of the .debug_rnglists section. dwarf_load_rnglists(),
dwarf_get_rnglist_offset_index_value(), dwarf_get_rnglist_context(),
dwarf_get_rnglist_head_basics(), dwarf_get_rnglist_context_basics(),
dwarf_get_rnglist_rle(). Also added new functions dwarf_dealloc_die(),
dwarf_dealloc_error(), and dwarf_dealloc_attribute() to provide type-safe calls for
deallocation of the specific data types. (May 20, 2020)

What was historically called ’length_size’ in libdwarf and dwarfdump is actually the size
of an offset (4 or 8 in DWARF2,3,4 and 5). For readability all instances of ’length_size’
are being converted, as time permits, to ’offset_size’. (May 1, 2020)

Added a new function dwarf_set_de_alloc_flag() which allows turning-off of libdwarf-
internal allocation tracking to improve libdwarf performance a few percent (which only
really matters with giant DWARF sections). The downside of turning off the flag is
consumer code must do all the dwarf_dealloc() calls itself to avoid memory leaks.
(March 14, 2020)

Corrected the documentation of dwarf_diename: It was never appropriate to use
dwarf_dealloc on the string pointer returned but Up till now this document said such a
call was required. (March 14, 2020)

Rev 3.17 7 November 2020 - 4 -

- 5 -

Now we document here that if one uses dwarf_init() or dwarf_init_b() or
dwarf_init_path() that the function dwarf_get_elf() cannot succeed as there is no longer
any Elf pointer (from libelf) to return. (November 26, 2019)

New function dwarf_gnu_debuglink() allow callers to access fields that GNU compilers
create and use to link an executable to its separate DWARF debugging content object file.
(September 9, 2019, updated October 2019)

dwarf_next_cu_header_d() (and the other earlier versions of this) now allow a null in
place of a pointer for next_cu_offset. dwarf_hipc_b() now allows a null in place of the
return_form and/or return_class arguments. Unless you know a sufficiently recent
libdwarf is to be used it is not safe to pass those arguments as null pointers. This
allowance of null is because we’ve become aware that the relevant NetBSD man pages on
these functions incorrectly specified that null was allowed. (April 22,2019)

The dwarf_elf_init() and dwarf_elf_init_b() are now deprecated as they require the use of
elf.h and libelf.h and libelf. Use dwarf_init_path() or dwarf_init_b() instead. The new
non-libelf reader code checks elf header values more thoroughly than libelf and detects
corrupted Elf earlier and in more cases than libelf. Since the reports of elf corruption
from libdwarf/dwarfdump are not detailed we suggest one use an object dumper to check
the object file in question. Tw o useful object dumpers are GNU readelf (part of GNU
binutils) and readelfobj (part of the readelfobj project on sourceforge.net). readelfobj
uses essentially the same algorithms as libdwarf does and should report something
meaningful. (April 20,2019)

Added support for MacOS dSYM objects and PE object files as well as an initialization
function allowing a path instead of a Posix/Unix fd or a libelf Elf*. (January 2019)

Added a libdwarf interface dwarf_errmsg_by_number() so that places in the code that can
have errors but do not want the Dwarf_Error complexities can report more details than
just an error number. (December 19, 2018)

Now Mach-o dSYM files containing dwarf are readable by libdwarf and their DWARF
dumped by dwarfdump. There are no new options or choices, libdwarf and dwarfdump
notice which kind of object they are processing. New functions added to libdwarf.h.in:
dwarf_init_path(),dwarf_object_detector_path(), and dwarf_object_detector_fd().
(October 24, 2018)

All references to Dwarf_Frame_Op3 have been removed as that struct was never created
or available. The new function dwarf_get_fde_info_for_reg3_b() is documented. (May
12, 2018)

With DWARF5 it became harder to use dwarf_srclines_data_b() as DWARF5 changed
each line table header file table to zero-based indexing from one-based (and made the
primary file index zero). So a new function dwarf_srclines_file_indexes() returns values
that make it easy to step through and call dwarf_srclines_data_b() sensibly whether the
line table is DWARF2,3,4, or 5. (March 23, 2018)

Added COMDAT support. Recent compilers generate COMDAT sections (for some
DWARF information) routinely so this became important recently. The new libdwarf
COMDAT support extends the groupnumber idea as suggested just below. (May 17,

Rev 3.17 7 November 2020 - 5 -

- 6 -

2017)

Adding dwarf_init_b() and dwarf_elf_init_b() and dwarf_object_init_b() with a
groupnumber option added. DWARF5 adds split-dwarf and we call original sections like
.debug_info group one and new sections like .debug_info.dwo group two. It has not
escaped our attention that this numbering can be extended to deal with Elf COMDAT
section groups of DWARF information, though COMDAT groups are not currently
supported. (April 02, 2017)

Adding support for DWARF5 .debug_loc.dwo and split dwarf range tables. Added
dwarf_get_offset_size(). (November 08, 2015)

Adding support for reading DWARF5 line tables and GNU two-level line tables. The
function dwarf_srclines() still works but those using DWARF4 or DWARF5 are advised
to switch to dwarf_srclines_b(). dwarf_srclines() cannot handle skeleton line tables
sensibly and a new interface was needed for two-level line tables so the new approach
satisfies both. (October 5,2015)

Adding support for Package Files (DWARF5) to enable access of address data using
DW_FORM_addrx. See dwarf_set_tied_dbg(). (September 13, 2015)

Adding some DWARF5 support and improved DWP Package File support, using
dwarf_next_cu_header_d().

Added a note about dwarf_errmsg(): the string pointer returned should be considered
ephemeral, not a string which remains valid permanently. User code should print it or
copy it before calling other libdwarf functions on the specific Dwarf_Debug instance.
(May 15, 2014)

Added a printf-callback so libdwarf will not actually print to stdout. Added
dwarf_highpc_b() so return of a DWARF4 DW_AT_high_pc of class constant can be
returned properly. (August 15 2013)

Defined how the new operator DW_OP_GNU_const_type is handled. (January 26 2013)

Added dwarf_loclist_from_expr_b() function which adds arguments of the DWARF
version (2 for DWARF2, etc) and the offset size to the dwarf_loclist_from_expr_a()
function. Because the DW_OP_GNU_implicit_pointer opcode is defined differently for
DWARF2 than for later versions. (November 2012)

Added new functions (some for libdwarf client code) and internal logic support for the
DWARF4 .debug_types section. The new functions are dwarf_next_cu_header_c(),
dwarf_siblingof_b(), dwarf_offdie_b(),
dwarf_get_cu_die_offset_given_cu_header_offset_b(), dwarf_get_die_infotypes_flag(),
dwarf_get_section_max_offsets_b().

New functions and logic support additional detailed error reporting so that more compiler
bugs can be reported sensibly by consumer code (as opposed to having libdwarf just
assume things are ok and blindly continuing on with erroneous data). November 20,
2010

It seems impossible to default to both DW_FRAME_CFA_COL and
DW_FRAME_CFA_COL3 in a single build of libdwarf, so the default is now

Rev 3.17 7 November 2020 - 6 -

- 7 -

unambiguously DW_FRAME_CFA_COL3 unless the configure option --enable-
oldframecol is specified at configure time. The function dwarf_set_frame_cfa_value()
may be used to override the default : using that function gives consumer applications full
control (its use is highly recommended). (January 17,2010)

Added dwarf_set_reloc_application() and the default automatic application of Elf ’rela’
relocations to DWARF sections (such rela sections appear in .o files, not in executables or
shared objects, in general). The dwarf_set_reloc_application() routine lets a consumer
turn off the automatic application of ’rela’ relocations if desired (it is not clear why
anyone would really want to do that, but possibly a consumer could write its own
relocation application). An example application that traverses a set of DIEs was added to
the new dwarfexample directory (not in this libdwarf directory, but in parallel to it). (July
10, 2009)

Added dwarf_get_TAG_name() (and the FORM AT and so on) interface functions so
applications can get the string of the TAG, Attribute, etc as needed. (June 2009)

Added dwarf_get_ranges_a() and dwarf_loclist_from_expr_a() functions which add
arguments allowing a correct address_size when the address_size varies by compilation
unit (a varying address_size is quite rare as of May 2009). (May 2009)

Added dwarf_set_frame_same_value(), and dwarf_set_frame_undefined_value() to
complete the set of frame-information functions needed to allow an application get all
frame information returned correctly (meaning that it can be correctly interpreted) for all
ABIs. Documented dwarf_set_frame_cfa_value(). Corrected spelling to
dwarf_set_frame_rule_initial_value(). (April 2009).

Added support for various DWARF3 features, but primarily a new frame-information
interface tailorable at run-time to more than a single ABI. See
dwarf_set_frame_rule_initial_value(), dwarf_set_frame_rule_table_size(),
dwarf_set_frame_cfa_value(). See also dwarf_get_fde_info_for_reg3() and
dwarf_get_fde_info_for_cfa_reg3(). (April 2006)

Added support for DWARF3 .debug_pubtypes section. Corrected various leaks (revising
dealloc() calls, adding new functions) and corrected dwarf_formstring() documentation.

Added dwarf_srclines_dealloc() as the previous deallocation method documented for data
returned by dwarf_srclines() was incapable of freeing all the allocated storage (14 July
2005).

dwarf_nextglob(), dwarf_globname(), and dwarf_globdie() were all changed to operate
on the items in the .debug_pubnames section.

All functions were modified to return solely an error code. Data is returned through
pointer arguments. This makes writing safe and correct library-using-code far easier. For
justification for this approach, see the chapter titled "Candy Machine Interfaces" in the
book "Writing Solid Code" by Steve Maguire.

Rev 3.17 7 November 2020 - 7 -

- 8 -

1.7 Items Removed

Dwarf_Type was removed since types are no longer special.

dwarf_typeof() was removed since types are no longer special.

Dwarf_Ellist was removed since element lists no longer are a special format.

Dwarf_Bounds was removed since bounds have been generalized.

dwarf_nextdie() was replaced by dwarf_next_cu_header() to reflect the real way DWARF
is organized. The dwarf_nextdie() was only useful for getting to compilation unit
beginnings, so it does not seem harmful to remove it in favor of a more direct function.

dwarf_childcnt() is removed on grounds that no good use was apparent.

dwarf_prevline() and dwarf_nextline() were removed on grounds this is better left to a
debugger to do. Similarly, dwarf_dieline() was removed.

dwarf_is1stline() was removed as it was not meaningful for the revised DWARF line
operations.

Any libdwarf implementation might well decide to support all the removed functionality
and to retain the DWARF Version 1 meanings of that functionality. This would be
difficult because the original libdwarf draft specification used traditional C library
interfaces which confuse the values returned by successful calls with exceptional
conditions like failures and ’no more data’ indications.

1.8 Revision History

September 2020 A new approach (simpler, more uniform) to deal with a failure of a
dwarf_init*() or dwarf_elf_init*() call is described in Chapter 4.
Improved support for split dwarf. Added dwarf_get_ranges_b().

May 2020 Adding support for DWARF5 sections .debug_rnglists and
.debug_loclists.

March 2020 Added dwarf_set_de_alloc_flag() so consumers get a little better
performance from libdwarf. At a price. See the description a bit later
here.

January 2019 Added support for reading DWARF in PE object files.

October 2018 Added support for reading MacOS dSYM object files.

2017 Added support for nearly all of DWARF5.

July 2014 Added support for the .gdb_index section and started support for the
.debug_cu_index and .debug_tu_index sections.

October 2011 DWARF4 support for reading .debug_types added.

March 93 Work on DWARF2 SGI draft begins

Rev 3.17 7 November 2020 - 8 -

- 9 -

June 94 The function returns are changed to return an error/success code only.

April 2006 Support for DWARF3 consumer operations is close to completion.

November 2010 Added various new functions and improved error checking.

March 2017 Adding support for DWARF5 split dwarf.

2. Types Definitions

2.1 General Description

The libdwarf.h header file contains typedefs and preprocessor definitions of types and
symbolic names used to reference objects of libdwarf. The types defined by typedefs
contained in libdwarf.h all use the convention of adding Dwarf_ as a prefix and can be
placed in three categories:

• Scalar types : The scalar types defined in libdwarf.h are defined primarily for
notational convenience and identification. Depending on the individual definition,
they are interpreted as a value, a pointer, or as a flag.

• Aggregate types : Some values can not be represented by a single scalar type; they
must be represented by a collection of, or as a union of, scalar and/or aggregate
types.

• Opaque types : The complete definition of these types is intentionally omitted; their
use is as handles for query operations, which will yield either an instance of
another opaque type to be used in another query, or an instance of a scalar or
aggregate type, which is the actual result.

2.2 Scalar Types

The following are the defined by libdwarf.h:

typedef int Dwarf_Bool;
typedef unsigned long long Dwarf_Off;
typedef unsigned long long Dwarf_Unsigned;
typedef unsigned short Dwarf_Half;
typedef unsigned char Dwarf_Small;
typedef signed long long Dwarf_Signed;
typedef unsigned long long Dwarf_Addr;
typedef void *Dwarf_Ptr;
typedef void (*Dwarf_Handler)(Dwarf_Error error, Dwarf_Ptr errarg);

Dwarf_Ptr is an address for use by the host program calling the library, not for

Rev 3.17 7 November 2020 - 9 -

- 10 -

representing pc-values/addresses within the target object file. Dwarf_Addr is for pc-
values within the target object file. The sample scalar type assignments above are for a
libdwarf.h that can read and write 32-bit or 64-bit binaries on a 32-bit or 64-bit host
machine. The types must be defined appropriately for each implementation of libdwarf.
A description of these scalar types in the SGI/MIPS environment is given in Figure 1.

NAME SIZE ALIGNMENT PURPOSE

Dwarf_Bool 4 4 Boolean states
Dwarf_Off 8 8 Unsigned file offset
Dwarf_Unsigned 8 8 Unsigned large integer
Dwarf_Half 2 2 Unsigned medium integer
Dwarf_Small 1 1 Unsigned small integer
Dwarf_Signed 8 8 Signed large integer
Dwarf_Addr 8 8 Program address

(target program)
Dwarf_Ptr 4|8 4|8 Dwarf section pointer

(host program)
Dwarf_Handler 4|8 4|8 Pointer to

error handler function

Figure 1. Scalar Types

2.3 Aggregate Types

The following aggregate types are defined by libdwarf.h: Dwarf_Loc,
Dwarf_Locdesc, Dwarf_Block, Dwarf_Frame_Op. Dwarf_Regtable.
Dwarf_Regtable3. While most of libdwarf acts on or returns simple values or
opaque pointer types, this small set of structures seems useful. Yet, at the same time,
these public structures are inflexible as any change in format or content breaks binary
(and possibly source in some cases) compatibility.

2.3.1 Location Record

The Dwarf_Loc type identifies a single atom of a location description or a location
expression. This is obsolete and should not be used, though it works adequately for
DWARF2.

typedef struct {
Dwarf_Small lr_atom;
Dwarf_Unsigned lr_number;
Dwarf_Unsigned lr_number2;
Dwarf_Unsigned lr_offset;

} Dwarf_Loc;

The lr_atom identifies the atom corresponding to the DW_OP_* definition in dwarf.h

Rev 3.17 7 November 2020 - 10 -

- 11 -

and it represents the operation to be performed in order to locate the item in question.

The lr_number field is the operand to be used in the calculation specified by the
lr_atom
field; not all atoms use this field. Some atom operations imply signed numbers so it is
necessary to cast this to a Dwarf_Signed type for those operations.

The lr_number2 field is the second operand specified by the lr_atom field; only
DW_OP_BREGX has this field. Some atom operations imply signed numbers so it may be
necessary to cast this to a Dwarf_Signed type for those operations.

For a DW_OP_implicit_value operator the lr_number2 field is a pointer to the
bytes of the value. The field pointed to is lr_number bytes long. There is no explicit
terminator. Do not attempt to free the bytes which lr_number2 points at and do not
alter those bytes. The pointer value remains valid till the open Dwarf_Debug is closed.
This is a rather ugly use of a host integer to hold a pointer. You will normally have to do
a ’cast’ operation to use the value.

For a DW_OP_GNU_const_type operator the lr_number2 field is a pointer to a
block with an initial unsigned byte giving the number of bytes following, followed
immediately that number of const value bytes. There is no explicit terminator. Do not
attempt to free the bytes which lr_number2 points at and do not alter those bytes.
The pointer value remains valid till the open Dwarf_Debug is closed. This is a rather
ugly use of a host integer to hold a pointer. You will normally have to do a ’cast’
operation to use the value.

The lr_offset field is the byte offset (within the block the location record came from)
of the atom specified by the lr_atom field. This is set on all atoms. This is useful for
operations DW_OP_SKIP and DW_OP_BRA.

2.3.2 Location Description

This is obsolete and should not be used, though it works ok for DWARF2.. The
Dwarf_Locdesc type represents an ordered list of Dwarf_Loc records used in the
calculation to locate an item. Note that in many cases, the location can only be calculated
at runtime of the associated program.

typedef struct {
Dwarf_Addr ld_lopc;
Dwarf_Addr ld_hipc;
Dwarf_Unsigned ld_cents;
Dwarf_Loc* ld_s;

} Dwarf_Locdesc;

The ld_lopc and ld_hipc fields provide an address range for which this location
descriptor is valid. Both of these fields are set to zero if the location descriptor is valid

Rev 3.17 7 November 2020 - 11 -

- 12 -

throughout the scope of the item it is associated with. These addresses are virtual
memory addresses, not offsets-from-something. The virtual memory addresses do not
account for dso movement (none of the pc values from libdwarf do that, it is up to the
consumer to do that).

The ld_cents field contains a count of the number of Dwarf_Loc entries pointed to
by the ld_s field.

The ld_s field points to an array of Dwarf_Loc records.

2.3.3 Data Block

This is obsolete and should not be used, though it works ok for DWARF2. The
Dwarf_Block type is used to contain the value of an attribute whose form is either
DW_FORM_block1, DW_FORM_block2, DW_FORM_block4, DW_FORM_block8,
or DW_FORM_block. Its intended use is to deliver the value for an attribute of any of
these forms.

typedef struct {
Dwarf_Unsigned bl_len;
Dwarf_Ptr bl_data;
Dwarf_Small bl_from_loclist;
Dwarf_Unsigned bl_section_offset;

} Dwarf_Block;

The bl_len field contains the length in bytes of the data pointed to by the bl_data
field.

The bl_data field contains a pointer to the uninterpreted data. Since we use a
Dwarf_Ptr here one must copy the pointer to some other type (typically an unsigned
char *) so one can add increments to index through the data. The data pointed to by
bl_data is not necessarily at any useful alignment.

2.3.4 Frame Operation Codes: DWARF 2

This interface is adequate for DWARF2 but not entirely suitable for DWARF3 or later. A
new (functional) interface is needed. This DWARF2 interface is not sufficient but at
present is the only available interface.

See also the section "Low Lev el Frame Operations" below.

The DWARF2 Dwarf_Frame_Op type is used to contain the data of a single instruction
of an instruction-sequence of low-level information from the section containing frame
information. This is ordinarily used by Internal-level Consumers trying to print

Rev 3.17 7 November 2020 - 12 -

- 13 -

ev erything in detail.

typedef struct {
Dwarf_Small fp_base_op;
Dwarf_Small fp_extended_op;
Dwarf_Half fp_register;
Dwarf_Signed fp_offset;
Dwarf_Offset fp_instr_offset;

} Dwarf_Frame_Op;

fp_base_op is the 2-bit basic op code. fp_extended_op is the 6-bit extended
opcode (if fp_base_op indicated there was an extended op code) and is zero
otherwise.

fp_register is any (or the first) register value as defined in the Call frame
instruction encodings in the dwarf document (in DWARF3 see Figure 40,in
DWARF5 see table 7.29). If not used with the operation it is 0.

fp_offset is the address, delta, offset, or second register as defined in the Call
frame instruction encodings documentation. If this is an address then the
value should be cast to (Dwarf_Addr) before being used.

In any implementation this field *must* be as large as the largest of Dwarf_Ptr,
Dwarf_Signed, and Dwarf_Addr for this to work properly. If not used with the op it is 0.
If the fp_extended_op is DW_CFA_def_cfa or DW_CFA_val_expression or
DW_CFA_expression then fp_offset is a pointer to an expression block in the in-
memory copy of the frame section.

fp_instr_offset is the byte_offset (within the instruction stream of the frame
instructions) of this operation. It starts at 0 for a given frame descriptor.

2.3.5 Frame Regtable: DWARF 2

This interface is adequate for DWARF2 and MIPS but not for DWARF3 or later. A
separate and preferred interface usable for DWARF3 and for DWARF2 is described
below. See also the section "Low Lev el Frame Operations" below.

The Dwarf_Regtable type is used to contain the register-restore information for all
registers at a given PC value. Normally used by debuggers. If you wish to default to this
interface and to the use of DW_FRAME_CFA_COL, specify --enable_oldframecol at
libdwarf configure time. Or add a call
dwarf_set_frame_cfa_value(dbg,DW_FRAME_CFA_COL) after your dwarf_init_b()
call, this call replaces the default libdwarf-compile-time value with
DW_FRAME_CFA_COL.

Rev 3.17 7 November 2020 - 13 -

- 14 -

/* DW_REG_TABLE_SIZE must reflect the number of registers
*(DW_FRAME_LAST_REG_NUM) as defined in dwarf.h
*/
#define DW_REG_TABLE_SIZE <fill in size here, 66 for MIPS/IRIX>
typedef struct {

struct {
Dwarf_Small dw_offset_relevant;
Dwarf_Half dw_regnum;
Dwarf_Addr dw_offset;

} rules[DW_REG_TABLE_SIZE];
} Dwarf_Regtable;

The array is indexed by register number. The field values for each index are described
next. For clarity we describe the field values for index rules[M] (M being any leg al array
element index).

dw_offset_relevant is non-zero to indicate the dw_offset field is meaningful.
If zero then the dw_offset is zero and should be ignored.

dw_regnum is the register number applicable. If dw_offset_relevant is zero,
then this is the register number of the register containing the value for register M. If
dw_offset_relevant is non-zero, then this is the register number of the register to
use as a base (M may be DW_FRAME_CFA_COL, for example) and the dw_offset
value applies. The value of register M is therefore the value of register dw_regnum.

dw_offset should be ignored if dw_offset_relevant is zero. If
dw_offset_relevant is non-zero, then the consumer code should add the value to
the value of the register dw_regnum to produce the value.

2.3.6 Frame Operation Codes: DWARF 3 (for DWARF2 and later)

This interface was intended to be adequate for DWARF3 and for DWARF2 (and
DWARF4) but was never implemented.

2.3.7 Frame Regtable: DWARF 3 (for DWARF2 and later)

This interface is adequate for DWARF2 and later versions. It is new in libdwarf as of
April 2006. The default configure of libdwarf inserts DW_FRAME_CFA_COL3 as the
default CFA column. Or add a call
dwarf_set_frame_cfa_value(dbg,DW_FRAME_CFA_COL3) after your dwarf_init_b()
call, this call replaces the default libdwarf-compile-time value with
DW_FRAME_CFA_COL3.

The Dwarf_Regtable3 type is used to contain the register-restore information for all
registers at a given PC value. Normally used by debuggers.

Rev 3.17 7 November 2020 - 14 -

- 15 -

typedef struct Dwarf_Regtable_Entry3_s {
Dwarf_Small dw_offset_relevant;
Dwarf_Small dw_value_type;
Dwarf_Half dw_regnum;
Dwarf_Unsigned dw_offset_or_block_len;
Dwarf_Ptr dw_block_ptr;

}Dwarf_Regtable_Entry3;

typedef struct Dwarf_Regtable3_s {
struct Dwarf_Regtable_Entry3_s rt3_cfa_rule;
Dwarf_Half rt3_reg_table_size;
struct Dwarf_Regtable_Entry3_s * rt3_rules;

} Dwarf_Regtable3;

The array is indexed by register number. The field values for each index are described
next. For clarity we describe the field values for index rules[M] (M being any leg al array
element index). (DW_FRAME_CFA_COL3 DW_FRAME_SAME_VAL,
DW_FRAME_UNDEFINED_VAL are not legal array indexes, nor is any index < 0 or >=
rt3_reg_table_size); The caller of routines using this struct must create data space for
rt3_reg_table_size entries of struct Dwarf_Regtable_Entry3_s and arrange that rt3_rules
points to that space and that rt3_reg_table_size is set correctly. The caller need not (but
may) initialize the contents of the rt3_cfa_rule or the rt3_rules array. The following
applies to each rt3_rules rule M:

dw_regnum is the register number applicable. If dw_regnum is
DW_FRAME_UNDEFINED_VAL, then the register I has undefined value. If
dw_regnum is DW_FRAME_SAME_VAL, then the register I has the same
value as in the previous frame.

If dw_regnum is neither of these two, then the following apply:

dw_value_type determines the meaning of the other fields. It is one of
DW_EXPR_OFFSET (0), DW_EXPR_VAL_OFFSET(1),
DW_EXPR_EXPRESSION(2) or DW_EXPR_VAL_EXPRESSION(3).

If dw_value_type is DW_EXPR_OFFSET (0) then this is as in DWARF2
and the offset(N) rule or the register(R) rule of the DWARF3 and DWARF2
document applies. The value is either:

If dw_offset_relevant is non-zero, then dw_regnum is
effectively ignored but must be identical to
DW_FRAME_CFA_COL3 (and the dw_offset value applies. The
value of register M is therefore the value of CFA plus the value of
dw_offset. The result of the calculation is the address in memory
where the value of register M resides. This is the offset(N) rule of the
DWARF2 and DWARF3 documents.

dw_offset_relevant is zero it indicates the dw_offset field

Rev 3.17 7 November 2020 - 15 -

- 16 -

is not meaningful. The value of register M is the value currently in
register dw_regnum (the value DW_FRAME_CFA_COL3 must not
appear, only real registers). This is the register(R) rule of the
DWARF3 spec.

If dw_value_type is DW_EXPR_OFFSET (1) then this is the the
val_offset(N) rule of the DWARF3 spec applies. The calculation is identical to
that of DW_EXPR_OFFSET (0) but the value is interpreted as the value of
register M (rather than the address where register M’s value is stored).

If dw_value_type is DW_EXPR_EXPRESSION (2) then this is the the
expression(E) rule of the DWARF3 document.

dw_offset_or_block_len is the length in bytes of the in-
memory block pointed at by dw_block_ptr. dw_block_ptr is
a DWARF expression. Evaluate that expression and the result is the
address where the previous value of register M is found.

If dw_value_type is DW_EXPR_VAL_EXPRESSION (3) then this is the
the val_expression(E) rule of the DWARF3 spec.

dw_offset_or_block_len is the length in bytes of the in-
memory block pointed at by dw_block_ptr. dw_block_ptr is
a DWARF expression. Evaluate that expression and the result is the
previous value of register M.

The rule rt3_cfa_rule is the current value of the CFA. It is interpreted
exactly like any register M rule (as described just above) except that
dw_regnum cannot be CW_FRAME_CFA_REG3 or
DW_FRAME_UNDEFINED_VAL or DW_FRAME_SAME_VAL but must be
a real register number.

2.3.8 Macro Details Record

The Dwarf_Macro_Details type gives information about a single entry in the
.debug.macinfo section (DWARF2, DWARF3, and DWARF4). It is not useful for
DWARF 5 .debug_macro section data.

struct Dwarf_Macro_Details_s {
Dwarf_Off dmd_offset;
Dwarf_Small dmd_type;
Dwarf_Signed dmd_lineno;
Dwarf_Signed dmd_fileindex;
char * dmd_macro;

};
typedef struct Dwarf_Macro_Details_s Dwarf_Macro_Details;

Rev 3.17 7 November 2020 - 16 -

- 17 -

dmd_offset is the byte offset, within the .debug_macinfo section, of this macro
information.

dmd_type is the type code of this macro info entry (or 0, the type code indicating that
this is the end of macro information entries for a compilation unit. See
DW_MACINFO_define, etc in the DWARF document.

dmd_lineno is the line number where this entry was found, or 0 if there is no
applicable line number.

dmd_fileindex is the file index of the file involved. This is only guaranteed
meaningful on a DW_MACINFO_start_file dmd_type. Set to -1 if unknown (see
the functional interface for more details).

dmd_macro is the applicable string. For a DW_MACINFO_define this is the macro
name and value. For a DW_MACINFO_undef, or this is the macro name. For a
DW_MACINFO_vendor_ext this is the vendor-defined string value. For other
dmd_types this is 0.

2.4 Opaque Types

The opaque types declared in libdwarf.h are used as descriptors for queries against
DWARF information stored in various debugging sections. Each time an instance of an
opaque type is returned as a result of a libdwarf operation (Dwarf_Debug excepted), it
should be freed, using dwarf_dealloc() when it is no longer of use (read the
following documentation for details, as in at least one case there is a special routine
provided for deallocation and dwarf_dealloc() is not directly called: see
dwarf_srclines()). Some functions return a number of instances of an opaque type
in a block, by means of a pointer to the block and a count of the number of opaque
descriptors in the block: see the function description for deallocation rules for such
functions. The list of opaque types defined in libdwarf.h that are pertinent to the
Consumer Library, and their intended use is described below. This is not a full list of the
opaque types, see libdwarf.h for the full list.

typedef struct Dwarf_Debug_s* Dwarf_Debug;

An instance of the Dwarf_Debug type is created as a result of a successful call to
dwarf_init_b(), or dwarf_elf_init_b(), and is used as a descriptor for
subsequent access to most libdwarf functions on that object. The storage pointed to
by this descriptor should be not be freed, using the dwarf_dealloc() function.
Instead free it with dwarf_finish().

typedef struct Dwarf_Die_s* Dwarf_Die;

An instance of a Dwarf_Die type is returned from a successful call to the
dwarf_siblingof(), dwarf_child, or dwarf_offdie_b() function, and is
used as a descriptor for queries about information related to that DIE. The storage
pointed to by this descriptor should be freed, using dwarf_dealloc() with the

Rev 3.17 7 November 2020 - 17 -

- 18 -

allocation type DW_DLA_DIE when no longer needed, or, preferably, call
dwarf_dealloc_die() instead.

typedef struct Dwarf_Line_s* Dwarf_Line;

Instances of Dwarf_Line type are returned from a successful call to the
dwarf_srclines() function, and are used as descriptors for queries about source
lines. The storage pointed to by these descriptors should be individually freed, using
dwarf_dealloc() with the allocation type DW_DLA_LINE when no longer needed.

typedef struct Dwarf_Global_s* Dwarf_Global;

Instances of Dwarf_Global type are returned from a successful call to the
dwarf_get_globals() function, and are used as descriptors for queries about global
names (pubnames).

typedef struct Dwarf_Weak_s* Dwarf_Weak;

Instances of Dwarf_Weak type are returned from a successful call to the SGI-specific
dwarf_get_weaks() function, and are used as descriptors for queries about weak
names. The storage pointed to by these descriptors should be individually freed, using
dwarf_dealloc() with the allocation type DW_DLA_WEAK_CONTEXT (or
DW_DLA_WEAK, an older name, supported for compatibility) when no longer needed.

typedef struct Dwarf_Func_s* Dwarf_Func;

Instances of Dwarf_Func type are returned from a successful call to the SGI-specific
dwarf_get_funcs() function, and are used as descriptors for queries about static
function names.

typedef struct Dwarf_Type_s* Dwarf_Type;

Instances of Dwarf_Type type are returned from a successful call to the SGI-specific
dwarf_get_types() function, and are used as descriptors for queries about user
defined types.

typedef struct Dwarf_Var_s* Dwarf_Var;

Instances of Dwarf_Var type are returned from a successful call to the SGI-specific
dwarf_get_vars() function, and are used as descriptors for queries about static
variables.

typedef struct Dwarf_Error_s* Dwarf_Error;

This descriptor points to a structure that provides detailed information about errors
detected by libdwarf. Users typically provide a location for libdwarf to store this
descriptor for the user to obtain more information about the error. The storage pointed to

Rev 3.17 7 November 2020 - 18 -

- 19 -

by this descriptor should be freed, using dwarf_dealloc() with the allocation type
DW_DLA_ERROR when no longer needed or, preferably, call
dwarf_dealloc_error() instead.

typedef struct Dwarf_Attribute_s* Dwarf_Attribute;

Instances of Dwarf_Attribute type are returned from a successful call to the
dwarf_attrlist(), or dwarf_attr() functions, and are used as descriptors for
queries about attribute values. The storage pointed to by this descriptor should be
individually freed, using dwarf_dealloc() with the allocation type DW_DLA_ATTR
when no longer needed, or call dwarf_dealloc_attribute() instead.

typedef struct Dwarf_Abbrev_s* Dwarf_Abbrev;

An instance of a Dwarf_Abbrev type is returned from a successful call to
dwarf_get_abbrev(), and is used as a descriptor for queries about abbreviations in
the .debug_abbrev section. The storage pointed to by this descriptor should be freed,
using dwarf_dealloc() with the allocation type DW_DLA_ABBREV when no longer
needed.

typedef struct Dwarf_Fde_s* Dwarf_Fde;

Instances of Dwarf_Fde type are returned from a successful call to the
dwarf_get_fde_list(), dwarf_get_fde_for_die(), or
dwarf_get_fde_at_pc() functions, and are used as descriptors for queries about
frames descriptors.

typedef struct Dwarf_Cie_s* Dwarf_Cie;

Instances of Dwarf_Cie type are returned from a successful call to the
dwarf_get_fde_list() function, and are used as descriptors for queries about
information that is common to several frames.

typedef struct Dwarf_Arange_s* Dwarf_Arange;

Instances of Dwarf_Arange type are returned from successful calls to the
dwarf_get_aranges(), or dwarf_get_arange() functions, and are used as
descriptors for queries about address ranges. The storage pointed to by this descriptor
should be individually freed, using dwarf_dealloc() with the allocation type
DW_DLA_ARANGE when no longer needed.

typedef struct Dwarf_Gdbindex_s* Dwarf_Gdbindex;

Instances of Dwarf_Gdbindex type are returned from successful calls to the
dwarf_gdbindex_header() function and are used to extract information from a
.gdb_index section. This section is a gcc/gdb extension and is designed to allow a
debugger fast access to data in .debug_info. The storage pointed to by this descriptor

Rev 3.17 7 November 2020 - 19 -

- 20 -

should be freed using a call to dwarf_gdbindex_free() with a valid
Dwarf_Gdbindex pointer as the argument.

typedef struct Dwarf_Xu_Index_Header_s* Dwarf_Xu_Index_header;

Instances of Dwarf_Xu_Index_Header_s type are returned from successful calls to
the dwarf_get_xu_index_header() function and are used to extract information
from a .debug_cu_index or .debug_tu_index section. These sections are used to make
possible access to .dwo sections gathered into a .dwp object as part of the DebugFission
(ie Split Dwarf) project allowing separation of an executable from most of its DWARF
debugging information. As of May 2015 these sections are accepted into DWARF5 but
the standard has not been released. The storage pointed to by this descriptor should be
freed using a call to dwarf_xh_header_free() with a valid
Dwarf_XuIndexHeader pointer as the argument.

typedef struct Dwarf_Line_Context_s * Dwarf_Line_Context;

dwarf_srclines_b() returns a Dwarf_Line_Context through an argument and the
new structure pointer lets us access line header information conveniently.

typedef struct Dwarf_Locdesc_c_s * Dwarf_Locdesc_c;
typedef struct Dwarf_Loc_Head_c_s * Dwarf_Loc_Head_c;

Dwarf_Loc* are involved in the DWARF5 interfaces to location lists. The new
interfaces are all functional and contents of the above types are not exposed.

typedef struct Dwarf_Macro_Context_s * Dwarf_Macro_Context;

dwarf_get_macro_context() and
dwarf_get_macro_context_by_offset() return a Dwarf_Line_Context
through an argument and the new structure pointer lets us access macro data from the
.debug_macro section.

typedef struct Dwarf_Dsc_Head_s * Dwarf_Dsc_Head;

dwarf_discr_list() returns a Dwarf_Dsc_Head through an argument and the new
structure pointer lets us access macro data from a DW_AT_discr_list attribute.

3. UTF-8 strings

libdwarf is defined, at various points, to return string pointers or to copy strings into
string areas you define. DWARF allows the use of DW_AT_use_UTF8 (DWARF3 and
later) DW_ATE_UTF (DWARF4 and later) to specify that the strings returned are actually
in UTF-8 format. What this means is that if UTF-8 is specified on a particular object it is
up to callers that wish to print all the characters properly to use language-appropriate
functions to print Unicode strings appropriately. All ASCII characters in the strings will

Rev 3.17 7 November 2020 - 20 -

- 21 -

print properly whether printed as wide characters or not. The methods to convert UTF-8
strings so they will print correctly for all such strings is beyond the scope of this
document.

If UTF-8 is not specified then one is probably safe in assuming the strings are
iso_8859-15 and normal C printf() will work fine..

In either case one should be wary of corrupted (accidentally or intentionally) strings with
ASCII control characters in the text. Such can cause bad effects if simply printed to a
device (such as a terminal).

4. Error Handling

The method for detection and disposition of error conditions that arise during access of
debugging information via libdwarf is consistent across all libdwarf functions that are
capable of producing an error. This section describes the method used by libdwarf in
notifying client programs of error conditions.

Most functions within libdwarf accept as an argument a pointer to a Dwarf_Error
descriptor where a Dwarf_Error descriptor is stored if an error is detected by the
function. Routines in the client program that provide this argument can query the
Dwarf_Error descriptor to determine the nature of the error and perform appropriate
processing. The intent is that clients do the appropriate processing immediately on
encountering an error and then the client calls dwarf_dealloc_error to free the
Dwarf_Error descriptor (at which point the client should zero that descriptor as the non-
zero value is stale).

We think the following is appropriate as a general outline. See dwarfdump source for
many examples of both of the following incomplete examples.

Rev 3.17 7 November 2020 - 21 -

- 22 -

int example_codea{Dwarf_Debug dbg,Dwarf_Die indie,
int is_info, Dwarf_Die *sibdie, Dwarf_Error *err)

{
int res = 0;
const char *secname = 0;
res = dwarf_siblingof_b(dbg,indie,is_info,sibdie,

err);
if (res == DW_DLV_ERROR) {

return res; /*let higher level decide what to do
and it will eventually need to do
dwarf_dealloc_error() appropriately */

} else if (res == DW_DLV_NO_ENTRY) {
/* No sibdie created. Nothing done. *.
return res;

}
/* sibdie created, caller will have to eventually

do dwarf_dealloc_die() appropriately. */
...
return DW_DLV_OK;

}

In a case where it is ok to suppress the error as being unimporant, this is an outline, not a
useful function.

int example_codeb{Dwarf_Debug dbg, const char **sec_name,
int is_info)

{
Dwarf_Error e = 0;
int res = 0;
res = dwarf_get_die_section_name(dbg,is_info,

sec_name, &e);
if (res == DW_DLV_ERROR) {

dwarf_dealloc_error(e);
e = 0;
return res; /*let higher level decide what to do,

Nothing allocated in the call still exists. */
} if (res == DW_DLV_NO_ENTRY) {

....
}
...

}

In the rare case where the malloc arena is exhausted when trying to create a Dwarf_Error
descriptor a pointer to a statically allocated descriptor will be returned. This static
descriptor is new in December 2014. A call to dwarf_dealloc() to free the

Rev 3.17 7 November 2020 - 22 -

- 23 -

statically allocated descriptor is harmless (it sets the error value in the descriptor to
DW_DLE_FAILSAFE_ERRVAL). The possible conflation of errors when the arena is
exhausted (and a dwarf_error descriptor is saved past the next reader call in any thread) is
considered better than having libdwarf call abort() (as earlier libdwarf did).

We strongly suggest most applications calling libdwarf follow the suggestion above
(passing a valid Dwarf_Error address in the last argument when calling libdwarf where
there are such Dwarf_Error arguments) there are other approaches described just below
that might be worth considering in small simple applications as they reduce the
Dwarf_Error argument to just passing 0 (null pointer)..

The cases that arise when passing a null for the Dwarf_Error and where there is an error
detected are A) with an error handler function libdwarf will call that function and on
return to libdwarf, libdwarf will return DW_DLV_ERROR to the original client call.. or B)
with no error handler function (see below) libdwarf will print an error and call abort().

A. For the error-handler case a client program can specify a function to be invoked
upon detection of an error at the time the library is initialized (see
dwarf_init_b() or dwarf_init_path() for example). When a libdwarf

routine detects an error, this function is called with two arguments: a code
indicating the nature of the error and a pointer provided by the client at
initialization (again see dwarf_init_b() or dwarf_init_path()). This
pointer argument can be used to relay information between the error handler and
other routines of the client program. A client program can specify or change both
the error handling function and the pointer argument after initialization using
dwarf_seterrhand() and dwarf_seterrarg(). When the client error
function returns libdwarf returns DW_DLV_ERROR.

If the client passed in a non-null error argument in the libdwarf call finding an
error, the dwarf_seterrhand() function-invocation mentioned here does not
happen.

B. In the final case, where libdwarf functions are not provided a pointer to a
Dwarf_Error descriptor, and no error handling function was provided at
initialization, libdwarf functions print a short message to stdout and terminate
exectution with abort().

Before March 2016 libdwarf gave up when there was no error handling by
emitting a short message on stderr and calling abort(3C).

The following lists the processing steps taken upon detection of an error:

1. Check the error argument; if not a NULL pointer, allocate and initialize a
Dwarf_Error descriptor with information describing the error, place this
descriptor in the area pointed to by error, and return a value indicating an error
condition.

Rev 3.17 7 November 2020 - 23 -

- 24 -

2. If an errhand argument was provided to dwarf_init_b() at initialization,
call errhand() passing it the error descriptor and the value of the errarg
argument provided to dwarf_init_b(). If the error handling function returns,
return DW_DLV_ERROR indicating an error condition.

3. If neither the error argument nor an errhand argument was provided
Terminate program execution by calling abort(3C).

In all cases, it is clear from the value returned from a function that an error occurred in
executing the function, since DW_DLV_ERROR is returned.

As can be seen from the above steps, the client program can provide an error handler at
initialization, and still provide an error argument to libdwarf functions when it is not
desired to have the error handler invoked.

If a libdwarf function is called with invalid arguments, the behavior is undefined. In
particular, supplying a NULL pointer to a libdwarf function (except where explicitly
permitted), or pointers to invalid addresses or uninitialized data causes undefined
behavior; the return value in such cases is undefined, and the function may fail to invoke
the caller supplied error handler or to return a meaningful error number. Implementations
also may abort execution for such cases.

Some errors are so inconsequential that it does not warrant rejecting an object or
returning an error. Examples would be a frame length not being a multiple of an address-
size, an arange in .debug_aranges has some padding bytes, or a relocation could not be
completed. To make it possible for a client to report such errors the function
dwarf_get_harmless_error_list returns strings with error text in them. This
function may be ignored if client code does not want to bother with such error reporting.

4.1 Returned values in the functional interface

Values returned by libdwarf functions to indicate success and errors are enumerated in
Figure 2. The DW_DLV_NO_ENTRY case is useful for functions need to indicate that
while there was no data to return there was no error either. For example,
dwarf_siblingof() may return DW_DLV_NO_ENTRY to indicate that that there
was no sibling to return.

SYMBOLIC NAME VALUE MEANING

DW_DLV_ERROR 1 Error
DW_DLV_OK 0 Successful call
DW_DLV_NO_ENTRY -1 No applicable value

Figure 2. Error Indications

Each function in the interface that returns a value returns one of the integers in the above

Rev 3.17 7 November 2020 - 24 -

- 25 -

figure.

If DW_DLV_ERROR is returned and a pointer to a Dwarf_Error pointer is passed to
the function, then a Dwarf_Error handle is returned through the pointer. No other pointer
value in the interface returns a value. After the Dwarf_Error is no longer of interest, a
dwarf_dealloc(dbg,dw_err,DW_DLA_ERROR) on the error pointer is
appropriate to free any space used by the error information.

If DW_DLV_NO_ENTRY is returned no pointer value in the interface returns a value.

If DW_DLV_OK is returned, the Dwarf_Error pointer, if supplied, is not touched, but
any other values to be returned through pointers are returned. In this case calls
(depending on the exact function returning the error) to dwarf_dealloc() may be
appropriate once the particular pointer returned is no longer of interest.

Pointers passed to allow values to be returned through them are uniformly the last
pointers in each argument list.

All the interface functions are defined from the point of view of the writer-of-the-library
(as is traditional for UN*X library documentation), not from the point of view of the user
of the library. The caller might code:

Dwarf_Line line;
Dwarf_Signed ret_loff;
Dwarf_Error err;
int retval = dwarf_lineoff(line,&ret_loff,&err);

for the function defined as

int dwarf_lineoff(Dwarf_Line line,
Dwarf_Signed *return_lineoff,
Dwarf_Error* err);

and this document refers to the function as returning the value through *err or
*return_lineoff or uses the phrase "returns in the location pointed to by err". Sometimes
other similar phrases are used.

5. Memory Management

Several of the functions that comprise libdwarf return pointers (opaque descriptors) to
structures that have been dynamically allocated by the library. To manage dynamic
memory the function dwarf_dealloc() is provided to free storage allocated as a
result of a call to a libdwarf function. Some additional functions (described later) are
provided to free storage in particular circumstances. This section describes the general
strategy that should be taken by a client program in managing dynamic storage.

By default libdwarf tracks its allocations and dwarf_finish() cleans up
allocations where dwarf_dealloc() was not called. See
dwarf_set_de_alloc_flag() below.

Rev 3.17 7 November 2020 - 25 -

- 26 -

5.1 Read-only Properties

All pointers (opaque descriptors) returned by or as a result of a libdwarf Consumer

Library call should be assumed to point to read-only memory. The results are undefined
for libdwarf clients that attempt to write to a region pointed to by a value returned by a
libdwarf Consumer Library call.

5.2 Storage Deallocation

See the section "Returned values in the functional interface", above, for the general rules
where calls to dwarf_dealloc() are appropriate.

As of May 2020 there are additional dealloc calls which enable type-checking the calls:
dwarf_dealloc_error(), dwarf_dealloc_die(), and
dwarf_dealloc_attribute().

5.2.1 dwarf_dealloc()

The first prototype is the generic one that can dealloc any of the libdwarf types, such as
DW_DLA_DIE etc.. This has the disadvantages that the space_to_dealloc
argument cannot be type checked and the appropriate_dla_name is a simple
integer, hence not meaningfully checkable either.

Whenever possible, use a type-safe deallocation call (for several types that is the only
documented deallocation call) and for Dwarf_Die Dwarf_Attribute or
Dwarf_Error use the following dealloc functions instead of this one. The use of this
form remains fully supported,

void dwarf_dealloc(Dwarf_Debug dbg,
void *space_to_dealloc,
int appropriate_dla_name);

Figure 3. Example_dwarf_dealloc()
void exampledealloc(Dwarf_Debug dbg,Dwarf_Die somedie)
{

dwarf_dealloc(dbg,somedie,DW_DLA_DIE);
}

5.2.2 dwarf_dealloc_die()

The second prototype is only to dealloc a Dwarf_Die. Any call to this is typechecked.

void dwarf_dealloc_die(Dwarf_Die mydie);

Rev 3.17 7 November 2020 - 26 -

- 27 -

Figure 4. Example_dwarf_dealloc_die()
void exampledeallocdie(Dwarf_Die somedie)
{

dwarf_dealloc_die(somedie);
}

5.2.3 dwarf_dealloc_attribute()

The second prototype is only to dealloc a Dwarf_Attribute. These arise from calls from
dwarf_attrlist() Any call to this is typechecked.

void dwarf_dealloc_error(Dwarf_Debug dbg,
Dwarf_Die mydie);

Figure 5. Example_dwarf_dealloc_attribute()
void exampledeallocerror(Dwarf_Attribute attr)
{

dwarf_dealloc_attribute(attr);’
}

5.2.4 dwarf_dealloc_error()

The second prototype is only to dealloc a Dwarf_Error. These arise when some libdwarf
call returns DW_DLV_ERROR. Any call to this is typechecked.

void dwarf_dealloc_error(Dwarf_Debug dbg,
Dwarf_Die mydie);

Figure 6. Example_dwarf_dealloc_error()
void exampledeallocerror(Dwarf_Debug dbg,Dwarf_Error err)
{

dwarf_dealloc_error(dbg,err);’
}

See also Errors Returned from dwarf_init* calls (below).

In some cases the pointers returned by a libdwarf call are pointers to data which is not
freeable. The library knows from the allocation type provided to it whether the space is
freeable or not and will not free inappropriately when dwarf_dealloc() is called.
So it is vital that dwarf_dealloc() be called with the proper allocation type.

For all storage allocated by libdwarf, the client can free the storage for reuse by calling
dwarf_dealloc(), providing it with the Dwarf_Debug descriptor specifying the

Rev 3.17 7 November 2020 - 27 -

- 28 -

object for which the storage was allocated, a pointer to the area to be free-ed, and an
identifier that specifies what the pointer points to (the allocation type). For example, to
free a Dwarf_Die die belonging the the object represented by Dwarf_Debug dbg,
allocated by a call to dwarf_siblingof(), the call to dwarf_dealloc() would
be:

dwarf_dealloc(dbg, die, DW_DLA_DIE);
or, preferably,
dwarf_dealloc_die(die);

To free storage allocated in the form of a list of pointers (opaque descriptors), each
member of the list should be deallocated, followed by deallocation of the actual list itself.
The following code fragment uses an invocation of dwarf_attrlist() as an
example to illustrate a technique that can be used to free storage from any libdwarf

routine that returns a list:

Figure 7. Example1 dwarf_attrlist()
void example1(Dwarf_Debug dbg,Dwarf_Die somedie)
{

Dwarf_Signed atcount = 0;
Dwarf_Attribute *atlist = 0;
Dwarf_Error error = 0;
Dwarf_Signed i = 0;
int errv = 0;

errv = dwarf_attrlist(somedie, &atlist,&atcount, &error);
if (errv == DW_DLV_OK) {

for (i = 0; i < atcount; ++i) {
/* use atlist[i] */
dwarf_dealloc_attribute(atlist[i]);
/* This origiginal form still works.
dwarf_dealloc(dbg, atlist[i], DW_DLA_ATTR);
*/

}
dwarf_dealloc(dbg, atlist, DW_DLA_LIST);

}
}

dwarf_finish() will deallocate all dynamic storage associated with an instance of a
Dwarf_Debug type. In particular, it will deallocate all dynamically allocated space
associated with the Dwarf_Debug descriptor, and finally make the descriptor invalid.

5.2.5 Errors Returned from dwarf_init* calls

These errors are almost always due to fuzzing objects, injecting random values into
objects. Rarely seen in any valid object file. See "https://en.wikipedia.org/wiki/Fuzzing"

Rev 3.17 7 November 2020 - 28 -

- 29 -

A Dwarf_Error returned from any dwarf_init*() or dwarf_elf_init*()
should be dealt with like any other error. We start with an example of how to deal with
this class of errors. See just below the example for a further discussion.

Rev 3.17 7 November 2020 - 29 -

- 30 -

void exampleinitfail(const char *path,
char *true_pathbuf,
unsigned tpathlen,
unsigned access,
unsigned groupnumber)

{
Dwarf_Handler errhand = 0;
Dwarf_Ptr errarg = 0;
Dwarf_Error error = 0;
Dwarf_Debug dbg = 0;
const char *reserved1 = 0;
Dwarf_Unsigned reserved2 = 0;
Dwarf_Unsigned reserved3 = 0;
int res = 0;

res = dwarf_init_path(path,true_pathbuf,
tpathlen,access,groupnumber,errhand,
errarg,&dbg,reserved1,reserved2,
&reserved3,
&error);

/* Preferred version */
if (res == DW_DLV_ERROR) {

/* Valid call even though dbg is null! */
dwarf_dealloc(dbg,error,DW_DLA_ERROR);
/* Simpler newer form in

this comment, but use the
older form above for compatibility
with older libdwarf.
dwarf_dealloc_error(dbg,error);
With libdwarf before September 2020
these dealloc calls will leave
a few bytes allocated.

*/
/* The orginal recommendation to call

free(error) in this case is still
valid though it will not necessarily
free every byte allocated with
September 2020 and later libdwarf. */

}
/* Horrible messy alternative, best effort

if dwarf_package_version exists
(function created in October 2019
package version 20191106). */

if (res == DW_DLV_ERROR) {
const char *ver = dwarf_package_version();
int cmpres = 0;

Rev 3.17 7 November 2020 - 30 -

- 31 -

cmpres = strcmp(ver,"20200822");
if (cmpres > 0) {

dwarf_dealloc_error(dbg,error);
} else {

free(error);
}

}
}

If your application needs to be absolutely sure not even a single byte leaks from a failed
libdwarf init function call the only sure approach is to ensure you use a September 2020
(version 20200908) or later libdwarf. Versions between 20191104 and 20200908 have no
available function that will guarantee freeing these last few bytes.

If your application does not care if a failed libdwarf init function leaks a few bytes then
the September 2020 advice of calling dwarf_dealloc(dbg,error,DW_DLA_ERROR) is
best, as though leaks a few bytes with libdwarf before September 2020.

If your application is using 20191104 or earlier libdwarf the choice of free(error) will
avoid a leak from a failed dwarf init call, though changing to a more recent libdwarf will
then make a few bytes leak quite possible until the application is changed to use the
dwarf_dealloc call.

5.2.6 Error DW_DLA error free types

The codes that identify the storage pointed to in calls to dwarf_dealloc() are
described in figure 8.

Rev 3.17 7 November 2020 - 31 -

- 32 -

IDENTIFIER USED TO FREE

DW_DLA_STRING char*
DW_DLA_LOC Dwarf_Loc
DW_DLA_LOCDESC Dwarf_Locdesc
DW_DLA_ELLIST Dwarf_Ellist (not used)
DW_DLA_BOUNDS Dwarf_Bounds (not used)
DW_DLA_BLOCK Dwarf_Block
DW_DLA_DEBUG Dwarf_Debug (do not use)
DW_DLA_DIE Dwarf_Die
DW_DLA_LINE Dwarf_Line
DW_DLA_ATTR Dwarf_Attribute
DW_DLA_TYPE Dwarf_Type (not used)
DW_DLA_SUBSCR Dwarf_Subscr (not used)
DW_DLA_GLOBAL Dwarf_Global
DW_DLA_ERROR Dwarf_Error
DW_DLA_LIST a list of opaque descriptors
DW_DLA_LINEBUF Dwarf_Line* (not used)
DW_DLA_ARANGE Dwarf_Arange
DW_DLA_ABBREV Dwarf_Abbrev
DW_DLA_FRAME_OP Dwarf_Frame_Op
DW_DLA_CIE Dwarf_Cie
DW_DLA_FDE Dwarf_Fde
DW_DLA_LOC_BLOCK Dwarf_Loc Block
DW_DLA_FRAME_BLOCK Dwarf_Frame Block (not used)
DW_DLA_FUNC Dwarf_Func
DW_DLA_TYPENAME Dwarf_Type
DW_DLA_VAR Dwarf_Var
DW_DLA_WEAK Dwarf_Weak
DW_DLA_ADDR Dwarf_Addr
DW_DLA_RANGES Dwarf_Ranges
DW_DLA_GNU_INDEX_HEAD .debug_gnu_type/pubnames
DW_DLA_RNGLISTS_HEAD .debug_rnglists
DW_DLA_DGBINDEX Dwarf_Gdbindex
DW_DLA_XU_INDEX Dwarf_Xu_Index_Header
DW_DLA_LOC_BLOCK_C Dwarf_Loc_c
DW_DLA_LOCDESC_C Dwarf_Locdesc_c
DW_DLA_LOC_HEAD_C Dwarf_Loc_Head_c
DW_DLA_MACRO_CONTEXT Dwarf_Macro_Context
DW_DLA_DSC_HEAD Dwarf_Dsc_Head
DW_DLA_DNAMES_HEAD Dwarf_Dnames_Head
DW_DLA_STR_OFFSETS Dwarf_Str_Offsets_Table

Figure 8. Allocation/Deallocation Identifiers

Rev 3.17 7 November 2020 - 32 -

- 33 -

6. Functional Interface

This section describes the functions available in the libdwarf library. Each function
description includes its definition, followed by one or more paragraph describing the
function’s operation.

The following sections describe these functions.

6.1 Initialization Operations

These functions are concerned with preparing an object file for subsequent access by the
functions in libdwarf and with releasing allocated resources when access is complete.
dwarf_init_path() or dwarf_init_path_dl() are the initialization functions
to use if one actually has a path (if you just have an open fd or open libelf handle you
cannot use the _path_ versions that’s fine). These both allow libdwarf to attempt to
follow GNU debuglink hints in a specially produced executable/shared-object to find
the object file with the DWARF sections to match tne executable(or shared-object). For
non-debuglink executables these two functions behave identically.

GNU debuglink is completely different than and separate from Split Dwarf and
MacOS dSYM. it would seem unlikely that these could be combined in any single
executable/shared-object. All are intended to have DWARF fully available but not taking
space in the executable/shared object. See
https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html for information on
debuglink and the related build-id.

dwarf_init_path() provides no way to add extra global paths to debuglink
searches. But dwarf_init_path_dl() has 2 extra arguments to make adding extra
paths easy.

libdwarf lets one access the executable’s section .eh_frame with frame/backtrace
information by turning off recognition of GNU debuglink in the Dwarf_Debug being
opened by passing in true_path_out_buffer true_path_bufferlen as zero.

6.1.1 dwarf_init_path()

Rev 3.17 7 November 2020 - 33 -

- 34 -

int dwarf_init_path(
const char * path,
char * true_path_out_buffer,
unsigned true_path_bufferlen,
Dwarf_Unsigned access,
unsigned groupnumber,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Debug* dbg,
const char * reserved1,
Dwarf_Unsigned * reserved2,
Dwarf_Unsigned * reserved3,
Dwarf_Error* * error);

On success the function returns DW_DLV_OK, and returns a pointer to an initialized
Dwarf_Debug through the dbg argument. All this work identically across all supported
object file types.

If DW_DLV_NO_ENTRY is returned there is no such file and nothing else is done or
returned.

If DW_DLV_ERROR is returned a Dwarf_Error is returned through the error pointer. and
nothing else is done or returned.

Now we turn to the arguments.

Pass in the name of the object file via the path argument.

For MacOS pass in a pointer to true_path_out_buffer big pointing to a buffer
large enough to hold the passed-in path if that were doubled plus adding 100 characters.
Then pass that length in the true_path_bufferlen argument. If a file is found (the
dSYM path or if not that the original path) the final path is copied into
true_path_out_buffer. In any case, This is harmless with non-MacOS
executables, but for non-MacOS non GNU_debuglink objects
true_path_out_buffer will just match path.

For Elf executables/shared-objects using GNU_debuglink The same considerations
apply: pass in a pointer to true_path_out_buffer big pointing to a buffer large
enough to hold the passed-in path if that were doubled plus adding 100 characters (a
heuristic) (the 100 is arbitrary: GNU_debuglink paths can be long but not likely longer
than this suggested size.

When you know you won’t be reading MacOS executables and won’t be accessing
GNU_debuglink executables special treatment by passing 0 as arguments to
true_path_out_buffer and true_path_bufferlen. If those are zero the
MacOS/ GNU_debuglink special processing will not occur.

Pass in zero with the access argument. The DW_DLC_READ flag, which only ever
applied to libelf, is zero.

Rev 3.17 7 November 2020 - 34 -

- 35 -

The groupnumber argument indicates which group is to be accessed Group one is
normal dwarf sections such as .debug_info. Group two is DWARF5 dwo split-dwarf
dwarf sections such as .debug_info.dwo.

Groups three and higher are for COMDAT groups. If an object file has only sections
from one of the groups then passing zero will access that group. Otherwise passing zero
will access only group one.

See dwarf_sec_group_sizes() and dwarf_sec_group_map() for more
group information.

Typically pass in DW_GROUPNUMBER_ANY to groupnumber. Non-elf objects do
not use this field.

The errhand argument is a pointer to a function that will be invoked whenever an error
is detected as a result of a libdwarf operation. The errarg argument is passed as an
argument to the errhand function.

dbg is used to return an initialized Dwarf_Debug pointer.

reserved1, reserved2, and reserved3 are currently unused, pass 0 in to all
three.

Pass in a pointer to a Dwarf_Error to the error argument if you wish libdwarf to return
an error code.

6.1.2 dwarf_init_path_dl()

int dwarf_init_path_dl(
const char * path,
char * true_path_out_buffer,
unsigned true_path_bufferlen,
Dwarf_Unsigned access,
unsigned groupnumber,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
char ** global_paths,
unsigned int global_paths_count
Dwarf_Debug* dbg,
const char * reserved1,
Dwarf_Unsigned * reserved2,
Dwarf_Unsigned * reserved3,
Dwarf_Error* * error);

This function is identical to dwarf_init_path() in every respect except if you know
that you must use special paths to find the GNU debuglink target file with DWARF
information.

global_paths allows you to specifiy such paths. Pass in global_paths as a

Rev 3.17 7 November 2020 - 35 -

- 36 -

pointer to an array of pointer-to-char, each pointing to a global path string. Pass in
global_paths_count with the number of entries in the pointer array. Pass both as
zero if there are no debuglink global paths other than the default standard
/usr/lib/debug.

6.1.3 dwarf_init_b()

int dwarf_init_b(
int fd,

Dwarf_Unsigned access,
unsigned group_number,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Debug * dbg,
Dwarf_Error *error)

When it returns DW_DLV_OK, the function dwarf_init_b() returns through dbg a
Dwarf_Debug descriptor that represents a handle for accessing debugging records
associated with the open file descriptor fd. DW_DLV_NO_ENTRY is returned if the
object does not contain DWARF debugging information. DW_DLV_ERROR is returned if
an error occurred.

The access argument indicates what access is allowed for the section. The
DW_DLC_READ macro value is zero and valid for read access (only read access is
defined or discussed in this document). No value other than zero should be passed in to
these consumer/reader functions. The value passed in is ignored.

The groupnumber argument indicates which group is to be accessed Group one is
normal dwarf sections such as .debug_info. Group two is DWARF5 dwo split-dwarf
dwarf sections such as .debug_info.dwo.

Groups three and higher are for COMDAT groups. If an object file has only sections
from one of the groups then passing zero will access that group. Otherwise passing zero
will access only group one.

See dwarf_sec_group_sizes() and dwarf_sec_group_map() for more
group information.

The errhand argument is a pointer to a function that will be invoked whenever an error
is detected as a result of a libdwarf operation. The errarg argument is passed as an
argument to the errhand function.

The file descriptor associated with the fd argument must refer to an ordinary file (i.e. not
a pipe, socket, device, /proc entry, etc.), be opened with the at least as much permission
as specified by the access argument, and cannot be closed or used as an argument to
any system calls by the client until after dwarf_finish() is called. The seek position
of the file associated with fd is undefined upon return of dwarf_init().

Rev 3.17 7 November 2020 - 36 -

- 37 -

Historical Note: With SGI IRIX, by default it was allowed that the app close() fd
immediately after calling dwarf_init(), but that is not a portable approach (that it
worked was an accidental side effect of the fact that SGI IRIX used
ELF_C_READ_MMAP in its hidden internal call to elf_begin()). The portable
approach is to consider that fd must be left open till after the corresponding
dwarf_finish() call has returned.

Since dwarf_init() uses the same error handling processing as other libdwarf

functions (see Error Handling above), client programs will generally supply an error
parameter to bypass the default actions during initialization unless the default actions are
appropriate.

6.1.4 dwarf_init()

int dwarf_init(
int fd,
Dwarf_Unsigned access,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Debug * dbg,
Dwarf_Error *error)

dwarf_init() is identical to dwarf_init_b() except that dwarf_init() is
missing the groupnumber argument so access to an object file containing both dwo and
non-dwo DWARF5 object sections will access only group one (and will ignore the dwo
sections).

The dwarf_get_elf() function cannot succeed when using dwarf_init() or
dwarf_init_b() or dwarf_init_path() to open an object file.

6.1.5 dwarf_set_de_alloc_flag()

int dwarf_set_de_alloc_flag(
int v)

dwarf_set_de_alloc_flag() sets and returns a flag value applying to the current
running instance of libdwarf. It’s action sets an internal value, and that value should
be set/changed (if you wish to do that) before any other libdwarf calls.

By default libdwarf keeps track of all its internal allocations. So if the documentation
here says you should do dwarf_dealloc() calls (or other calls documented here for
specific functions) and you omit some or all of them then calling dwarf_finish()
will clean up all those allocations left undone.

If you call dwarf_set_de_alloc_flag(0) then libdwarf will not keep track of
allocations so your code must do all dwarf_dealloc() calls as defined below.

If you call dwarf_set_de_alloc_flag(1) that sets/restores the setting to its
default value so from that point all new internal allocations will be tracked and
dwarf_finish() can clean the new ones up.

Rev 3.17 7 November 2020 - 37 -

- 38 -

The return value of dwarf_set_de_alloc_flag() is the previous value of the
internal flag: One (1) is the default, meaning record allocations.. Zero (0) is the other
possible value, meaning do not record libdwarf allocations.

It is best to ignore this call unless you have gigantic DWARF sections and you need
whatever percent speed improvement from libdwarf that you can get. If you do use it
then by all means use tools such as cc --fsanitize... or valgrind to ensure there are no
leaks in your application (at least given your test cases).

The function name echos the spelling of a libdwarf-internal field in struct
Dwarf_Debug_s named de_alloc_tree.

6.1.6 Dwarf_Handler function

This is an example of a valid error handler function. A pointer to this (or another like it)
may be passed to dwarf_elf_init_b() or dwarf_init_b().

static void
simple_error_handler(Dwarf_Error error, Dwarf_Ptr errarg)
{

printf("libdwarf error: %d %s\n",
dwarf_errno(error), dwarf_errmsg(error));

exit(1);
}

This will only be called if an error is detected inside libdwarf and the Dwarf_Error
argument passed to libdwarf is NULL. A Dwarf_Error will be created with the error
number assigned by the library and passed to the error handler.

The second argument is a copy of the value passed in to dwarf_elf_init_b() or
dwarf_init() as the errarg() argument. Typically the init function would be
passed a pointer to an application-created struct containing the data the application needs
to do what it wants to do in the error handler.

In a language with exceptions or exception-like features an exception could be thrown
here. Or the application could simply give up and call exit() as in the sample given
above.

6.1.7 dwarf_elf_init_b() [deprecated 2019]

int dwarf_elf_init_b(
Elf * elf_file_pointer,
Dwarf_Unsigned access,
unsigned groupnumber,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Debug * dbg,
Dwarf_Error *error)

We recommend you change to calling dwarf_init_b() or dwarf_init_path()

Rev 3.17 7 November 2020 - 38 -

- 39 -

instead. The dwarf_elf_init() and dwarf_elf_init_b() interfaces give no
benefit over the other interfaces (other than allowing dwarf_get_elf() to succeed).

The function dwarf_elf_init_b() is similar to dwarf_init_b() but an open
Elf * pointer is passed instead of a file descriptor so dwarf_get_elf() can
succeed.

The client is allowed to use the Elf * pointer for its own purposes without restriction
during the time the Dwarf_Debug is open, except that the client should not
elf_end() the pointer till after dwarf_finish is called.

6.1.8 dwarf_elf_init() [deprecated 2019]

int dwarf_elf_init(
Elf * elf_file_pointer,
Dwarf_Unsigned access,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Debug * dbg,
Dwarf_Error *error)

The function dwarf_elf_init() is identical to dwarf_init[_b]() except an
open Elf * pointer is passed instead of a file descriptor so dwarf_get_elf() can
succeed.

Code using dwarf_elf_init[_b]() should be switched to calling
dwarf_init_b().

6.1.9 dwarf_get_elf()

int dwarf_get_elf(
Dwarf_Debug dbg,
Elf ** elf,
Dwarf_Error *error)

The function dwarf_get_elf() is only meaningful if a dwarf_elf_init[_b]()
function was used to initialize the pointer dbg. None of the other dwarf*init*() functions
here ever use libelf, so there is no elf pointer to return through the pointer, so and the call
will return DW_DLV_NO_ENTRY. In addition, this function is also not meaningful for an
object file that is not in the Elf format.

When it returns DW_DLV_OK, the function dwarf_get_elf() returns through the
pointer elf the Elf * handle used to access the object represented by the
Dwarf_Debug descriptor dbg. It returns DW_DLV_ERROR on error.

6.1.10 dwarf_set_tied_dbg()

Rev 3.17 7 November 2020 - 39 -

- 40 -

int dwarf_set_tied_dbg(
Dwarf_Debug dbg,
Dwarf_Debug tieddbg,
Dwarf_Error *error)

The function dwarf_set_tied_dbg() enables cross-object access of DWARF data.
If a DWARF5 Package object has DW_FORM_addrx or DW_FORM_GNU_addr_index
or one of the other indexed forms in DWARF5 in an address attribute one needs both the
Package file and the executable to extract the actual address with
dwarf_formaddr(). The utility function
dwarf_addr_form_is_indexed(form) is a handy way to know if an address
form is indexed. One does a normal dwarf_elf_init_b() or dwarf_init()_b
on each object and then tie the two together with a call such as:

Figure 9. Example2 dwarf_set_died_dbg()
void example2(Dwarf_Debug dbg, Dwarf_Debug tieddbg)
{

Dwarf_Error error = 0;
int res = 0;

/* Do the dwarf_init_b() or dwarf_elf_init_b()
calls to set
dbg, tieddbg at this point. Then: */

res = dwarf_set_tied_dbg(dbg,tieddbg,&error);
if (res != DW_DLV_OK) {

/* Something went wrong*/
}

}

When done with both dbg and tieddbg do the normal finishing operations on both in any
order.

It is possible to undo the tieing operation with

Figure 10. Example3 dwarf_set_tied_dbg() obsolete

void example3(Dwarf_Debug dbg)
{

Dwarf_Error error = 0;
int res = 0;
res = dwarf_set_tied_dbg(dbg,NULL,&error);
if (res != DW_DLV_OK) {

/* Something went wrong*/
}

}

It is not necessary to undo the tieing operation before finishing on the dbg and tieddbg.

Rev 3.17 7 November 2020 - 40 -

- 41 -

6.1.11 dwarf_get_tied_dbg()

int dwarf_get_tied_dbg(
Dwarf_Debug /*dbg*/,
Dwarf_Debug * /*tieddbg_out*/,
Dwarf_Error * /*error*/)

dwarf_get_tied_dbg returns DW_DLV_OK and sets tieddbg_out to the pointer
to the ’tied’ Dwarf_Debug. If there is no ’tied’ object tieddbg_out is set to NULL.

On error it returns DW_DLV_ERROR.

It never returns DW_DLV_NO_ENTRY.

6.1.12 dwarf_finish()

int dwarf_finish(
Dwarf_Debug dbg,
Dwarf_Error *error)

The function dwarf_finish() releases all Libdwarf internal resources associated
with the descriptor dbg, and invalidates dbg. It returns DW_DLV_ERROR if there is an
error during the finishing operation. It returns DW_DLV_OK for a successful operation.

Because int dwarf_init() opens an Elf descriptor on its fd and
dwarf_finish() does not close that descriptor, an app should use dwarf_get_elf
and should call elf_end with the pointer returned through the Elf** handle created
by int dwarf_init().

6.1.13 dwarf_set_stringcheck()

int dwarf_set_stringcheck(
int stringcheck)

The function int dwarf_set_stringcheck() sets a global flag and returns the
previous value of the global flag.

If the stringcheck global flag is zero (the default) libdwarf does string length validity
checks (the checks do slow libdwarf down very slightly). If the stringcheck global flag is
non-zero libdwarf does not do string length validity checks.

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

6.1.14 dwarf_set_reloc_application()

int dwarf_set_reloc_application(
int apply)

Rev 3.17 7 November 2020 - 41 -

- 42 -

The function int dwarf_set_reloc_application() sets a global flag and
returns the previous value of the global flag.

If the reloc_application global flag is non-zero (the default) then the applicable .rela
section (if one exists) will be processed and applied to any DWARF section when it is
read in. If the reloc_application global flag is zero no such relocation-application is
attempted.

Not all machine types (elf header e_machine) or all relocations are supported, but then
very few relocation types apply to DWARF debug sections.

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

It seems unlikely anyone will need to call this function.

6.1.15 dwarf_record_cmdline_options()

int dwarf_record_cmdline_options(
Dwarf_Cmdline_Options options)

The function int dwarf_record_cmdline_options() copies a
Dwarf_Cmdline_Options structure from consumer code to libdwarf.

The structure is defined in libdwarf.h.

The initial version of this structure has a single field check_verbose_mode which, if
non-zero, tells libdwarf to print some detailed messages to stdout in case certain errors
are detected.

The default for this value is FALSE (0) so the extra messages are off by default.

6.1.16 dwarf_object_init_b()

int dwarf_object_init_b(
Dwarf_Obj_Access_Interface* obj,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
unsigned groupnumber,
Dwarf_Debug* dbg,
Dwarf_Error* error)

The function int dwarf_object_init_b() enables access to non-Elf object files
by allowing the caller to then provide function pointers to code (user-written, not part of
libdwarf) that will look, to libdwarf, as if libdwarf was reading Elf.

See int dwarf_init_b() for additional information on the arguments passed in
(the obj argument here is a set of function pointers and describing how to access non-Elf

Rev 3.17 7 November 2020 - 42 -

- 43 -

files is beyond the scope of this document.

As a hint, note that the source files with dwarf_elf_init_file_ownership()
(dwarf_original_elf_init.c) and dwarf_elf_object_access_init() (dwarf_elf_access.c) are
the only sources that would need replacement for a different object format. The
replacement would need to emulate certain conventions of Elf objects, (mainly that
section index 0 is an empty section) but the rest of libdwarf uses what these two source
files set up without knowing how to operate on Elf.

Writing the functions needed to support non-Elf will require study of Elf and of the
object format involved. The topic is beyond the scope of this document.

6.1.17 dwarf_object_init()

int dwarf_object_init(
Dwarf_Obj_Access_Interface* obj,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Debug* dbg,
Dwarf_Error* error)

The function int dwarf_object_init() is the same as int
dwarf_object_init_b() except int dwarf_object_init() is missing the
groupnumber argument so DWARF5 split dwarf objects cannot be fully handled.

6.1.18 dwarf_get_real_section_name()

int dwarf_get_real_section_name(Dwarf_Debug dbg,
const char * std_section_name,
const char ** actual_sec_name_out,
Dwarf_Small * marked_compressed,
Dwarf_Small * marked_zlib_compressed,
Dwarf_Small * marked_shf_compressed,
Dwarf_Unsigned * compressed_length,
Dwarf_Unsigned * uncompressed_length,
Dwarf_Error * error);

Elf sections are sometimes compressed to reduce the disk footprint of the sections. It’s
sometimes interesting to library users what the real name was in the object file and
whether it was compressed. Libdwarf uncompresses such sections automatically. It’s not
usually necessary to know the true name or anything about compression.

The caller passes in a Dwarf_Debug pointer and a standard section name such as
".debug_info" . On success the function returns (through the other arguments) the true
section name and a flag which, if non-zero means the section was compressed and a flag
which, if non-zero means the section had the Elf section flag SHF_COMPRESSED set.
The caller must ensure that the memory pointed to by actual_sec_name_out,

Rev 3.17 7 November 2020 - 43 -

- 44 -

marked_zcompressed, and marked_zlib_compressed,
marked_shf_compressed, compressed_length, uncompressed_length,
is zero at the point of call.

The flag *marked_compressed, if non-zero, means the section name started with
.zdebug (indicating compression was done).

The flag marked_zlib_compressed, if non-zero means the initial bytes of the
section starte with the ASCII characters ZLIB and the section was compressed.

The flag marked_shf_compressed if non-zero means the Elf section sh_flag
SHF_COMPRESSED is set and the section was compressed.. The flag value in an elf
section header is (1<<11) (0x800).

The value compressed_length is passed back through the pointer if and only if the
section is compressed and the pointer is non-null.

The value uncompressed_length is passed back through the pointer if and only if
the section is compressed and the pointer is non-null.

If the section name passed in is not used by libdwarf for this object file the function
returns DW_DLV_NO_ENTRY

On error the function returns DW_DLV_ERROR.

The string pointed to by *actual_sec_name_out must not be free()d.

6.1.19 dwarf_package_version()

const char * dwarf_package_version(void);

The package version is set in config.h (from its value in configure.ac and in
CMakeLists.txt in the source tree) at the build time of the library. A pointer to a static
string is returned by this function. The format is standard ISO date format. For example
"20180718". It’s not entirely clear how this actually helps. But there is a request for this
and we provide it as of 23 October 2019.

6.2 Object Type Detectors

These are used by libdwarf and may be of use generally. They hav e no connection to
any Dwarf_Debug data as you see from the arguments passed in.

6.2.1 dwarf_object_detector_path()

Rev 3.17 7 November 2020 - 44 -

- 45 -

int dwarf_object_detector_path(const char *path,
char *outpath,
unsigned long outpath_len,
unsigned *ftype,
unsigned *endian,
unsigned *offsetsize,
Dwarf_Unsigned *filesize,
int * errcode);

On success the function returns DW_DLV_OK, and returns various data through the
arguments (described just below). This works identically across all supported object file
types.

If DW_DLV_NO_ENTRY is returned there is no such file and nothing else is done or
returned.

If DW_DLV_ERROR is returned a Dwarf_Error is returned through the error pointer. and
nothing else is done or returned.

Now we turn to the arguments. Pass in the name of the object file via the path
argument.

To outpath pass in a pointer big enough to hold the passed-in path if that were doubled
plus adding 100 characters. Then pass that length in the outpath_len argument. The
path will be copied to outpath. In the case of certain MacOS dSYM object files the final
outpath of the dSYM file (with MacOS conventional directories added) is copied into
outpath. Where the MacOS local directory tree is missing or incomplete outpath
will be left as a zero-lengh string.

To entirely skip the MacOS special treatment pass 0 as arguments to outpath and
outpath_len.

The ftype pointer argument returns DW_FTYPE_ELF, DW_FTYPE_MACH_O ,
DW_FTYPE_PE , DW_FTYPE_ARCHIVE or DW_FTYPE_UNKNOWN to the caller. The
DW_FTYPE_ARCHIVE value says nothing whatever about the contents of the archive.

The endian pointer argument returns DW_ENDIAN_BIG, DW_ENDIAN_LITTLE ,
DW_ENDIAN_SAME , DW_ENDIAN_OPPOSITE or DW_ENDIAN_UNKNOWN to the
caller.

The offsetsize pointer argument returns a size value from the object file. If the
object file uses 32-bit offsets it returns 32, and if 64-bit offsets it returns 64. Each object
type uses such values but the ways the value is used varies.

The filesize pointer argument returns the size, in bytes, of the object file. This is
essentially useless for DW_FTYPE_ARCHIVE files, one thinks.

The errcode pointer argument returns (if and only if DW_DLV_ERROR is returned by
the function) an integer error code. At this time there is no handy function to turn that
error code into a string. In the libdwarf source you will find that code in the DW_DLE_*
error list.

Rev 3.17 7 November 2020 - 45 -

- 46 -

6.2.2 dwarf_object_detector_fd()

int dwarf_object_detector_fd(int fd,
unsigned *ftype,
unsigned *endian,
unsigned *offsetsize,
Dwarf_Unsigned *filesize,
int * errcode);

dwarf_object_detector_fd() is the same as
dwarf_object_detector_path() except that no path strings apply to
dwarf_object_detector_fd().

6.3 Section Group Operations

The section group data is essential information when processing an object with
COMDAT section group DWARF sections or with both split-dwarf (.dwo sections) and
non-split dwarf sections.

It relies on Elf section groups, whereas some compilers rely instead on relocation
information to identify section groups. These relocation-specified groupings are not
understood at this time.

A standard DWARF2 or DWARF3 or DWARF4 object (Old Standard Object, or OSO)
will not contain any of those new sections. The DWARF4 standard, Appendix E.1
"Using Compilation Units" offers an overview of COMDAT section groups. libdwarf
assigns the group number one(1) to OSO DWARF. Any sections that are split dwarf
(section name ending in .dwo or one of the two special DWP index sections) are assigned
group number two(2) by libdwarf. COMDAT section groups are assigned groups
numbers 3 and higher as needed.

The COMDAT section group uses are not well defined, but popular compilations systems
are using such sections. There is no meaningful documentation that we can find (so far)
on how the COMDAT section groups are used, so libdwarf is based on observations of
what compilers generate.

6.3.1 dwarf_sec_group_sizes()

int dwarf_dwarf_sec_group_sizes(
Dwarf_Debug dbg,
Dwarf_Unsigned * section_count_out,
Dwarf_Unsigned * group_count_out,
Dwarf_Unsigned * selected_group_out,
Dwarf_Unsigned * map_entry_count_out,
Dwarf_Error * error)

The function dwarf_sec_group_sizes() may be called on any open
Dwarf_Debug. It returns DW_DLV_OK on success and returns values via the pointer

Rev 3.17 7 November 2020 - 46 -

- 47 -

arguments.

Once the Dwarf_Debug is open the group information is set and it will not change for
the life of this Dwarf_Debug.

The *section_count_out is set to the number of sections in the object. Many of the
sections will be irrelevant to libdwarf.

The *group_count_out is set to the number of groups in the object (as libdwarf
counts them). An OSO will have exactly one group. A DWP object will have exactly
one group. If is more than one group consumer code will likely want to open additional
Dwarf_Debug objects and request relevant information to process the DWARF
contents. An executable or a DWP object will always have a *group_count_out of
one(1). An executable or a shared library cannot have any COMDAT section groups as
the linker will have dealt with them.

The *selected_group_out is set to the group number that this Dwarf_Debug will
focus on. See dwarf_sec_group_map() for additional details on how
*selected_group_out is interpreted.

The *map_entry_count_out is set to the number of entries in the map. See
dwarf_sec_group_map().

On failure it returns DW_DLV_ERROR and sets *error

The initial implementation never returns DW_DLV_ERROR or DW_DLV_NO_ENTRY but
callers should allow for that possibility.

6.3.2 dwarf_sec_group_map()

int dwarf_sec_group_map(
Dwarf_Debug dbg,
Dwarf_Unsigned map_entry_count,
Dwarf_Unsigned * group_numbers_array,
Dwarf_Unsigned * section_numbers_array,
const char ** sec_names_array,
Dwarf_Error * error)

The function dwarf_sec_group_map() may be called on any open
Dwarf_Debug.

The caller must allocate map_entry_count arrays used in the following three
arguments the and pass the appropriate pointer into the function as well as passing in
map_entry_count itself.

The map entries returned cover all the DWARF related sections in the object though the
selected_group value will dictate which of the sections in the Dwarf_Debug will
actually be accessed via the usual libdwarf functions. That is, only sections in the
selected group may be directly accessed though libdwarf may indirectly access sections
in section group one(1) so relevant details can be accessed, such as abbreviation tables

Rev 3.17 7 November 2020 - 47 -

- 48 -

etc. Describing the details of this access outside the current selected_group goes
beyond what this document covers (as of this writing).

It returns DW_DLV_OK on success and sets values into the user-allocated array elements
(sorted by section number):

group_numbers_array[0]... group_numbers_array[map_entry_count-1]
section_numbers_array[0]... section_numbers_array[map_entry_count-1]
sec_names_array[0]... sec_names_array[map_entry_count-1]

group_numbers_array[0] for example is set to a group number. One(1), or two(2)
or if there are COMDAT groups it will be three(3) or higher.

section_numbers_array[0] for example is set to a valid Elf section number
relevant to DWARF (each section number shown will be greater than zero).

sec_names_array[0] for example is set to a pointer to a string containing the Elf
section name of the Elf section number in sections_number_array[0].

On error the function will return DW_DLV_ERROR or DW_DLV_NO_ENTRY which
indicates a serious problem with this object.

Here is an example of use of these functions.

Rev 3.17 7 November 2020 - 48 -

- 49 -

void examplesecgroup(Dwarf_Debug dbg)
{

int res = 0;
Dwarf_Unsigned section_count = 0;
Dwarf_Unsigned group_count;
Dwarf_Unsigned selected_group = 0;
Dwarf_Unsigned group_map_entry_count = 0;
Dwarf_Unsigned *sec_nums = 0;
Dwarf_Unsigned *group_nums = 0;
const char ** sec_names = 0;
Dwarf_Error error = 0;
Dwarf_Unsigned i = 0;

res = dwarf_sec_group_sizes(dbg,§ion_count,
&group_count,&selected_group, &group_map_entry_count,
&error);

if(res != DW_DLV_OK) {
/* Something is badly wrong*/
return;

}
/* In an object without split-dwarf sections

or COMDAT sections we now have
selected_group == 1. */

sec_nums = calloc(group_map_entry_count,sizeof(Dwarf_Unsigned));
if(!sec_nums) {

/* FAIL. out of memory */
return;

}
group_nums = calloc(group_map_entry_count,sizeof(Dwarf_Unsigned));
if(!group_nums) {

free(group_nums);
/* FAIL. out of memory */
return;

}
sec_names = calloc(group_map_entry_count,sizeof(char*));
if(!sec_names) {

free(group_nums);
free(sec_nums);
/* FAIL. out of memory */
return;

}

res = dwarf_sec_group_map(dbg,group_map_entry_count,
group_nums,sec_nums,sec_names,&error);

if(res != DW_DLV_OK) {

Rev 3.17 7 November 2020 - 49 -

- 50 -

/* FAIL. Something badly wrong. */
}
for(i = 0; i < group_map_entry_count; ++i) {

/* Now do something with
group_nums[i],sec_nums[i],sec_names[i] */

}
free(group_nums);
free(sec_nums);
/* The strings are in Elf data.

Do not free() the strings themselves.*/
free(sec_names);

}

6.4 Section size operations

These operations are informative but not normally needed.

6.4.1 dwarf_get_section_max_offsets_b()

int dwarf_get_section_max_offsets_b(Dwarf_debug dbg,
Dwarf_Unsigned * /*debug_info_size*/,
Dwarf_Unsigned * /*debug_abbrev_size*/,
Dwarf_Unsigned * /*debug_line_size*/,
Dwarf_Unsigned * /*debug_loc_size*/,
Dwarf_Unsigned * /*debug_aranges_size*/,
Dwarf_Unsigned * /*debug_macinfo_size*/,
Dwarf_Unsigned * /*debug_pubnames_size*/,
Dwarf_Unsigned * /*debug_str_size*/,
Dwarf_Unsigned * /*debug_frame_size*/,
Dwarf_Unsigned * /*debug_ranges_size*/,
Dwarf_Unsigned * /*debug_pubtypes_size*/,
Dwarf_Unsigned * /*debug_types_size*/);

The function dwarf_get_section_max_offsets_b() an open Dwarf_Dbg and
reports on the section sizes by pushing section size values back through the pointers.

Created in October 2011.

6.4.2 dwarf_get_section_max_offsets()

Rev 3.17 7 November 2020 - 50 -

- 51 -

int dwarf_get_section_max_offsets(Dwarf_debug dbg,
Dwarf_Unsigned * /*debug_info_size*/,
Dwarf_Unsigned * /*debug_abbrev_size*/,
Dwarf_Unsigned * /*debug_line_size*/,
Dwarf_Unsigned * /*debug_loc_size*/,
Dwarf_Unsigned * /*debug_aranges_size*/,
Dwarf_Unsigned * /*debug_macinfo_size*/,
Dwarf_Unsigned * /*debug_pubnames_size*/,
Dwarf_Unsigned * /*debug_str_size*/,
Dwarf_Unsigned * /*debug_frame_size*/,
Dwarf_Unsigned * /*debug_ranges_size*/,
Dwarf_Unsigned * /*debug_pubtypes_size*/);

The function is the same as dwarf_get_section_max_offsets_b() except it is
missing the debug_types_size() argument. Though obsolete it is still supported.

6.5 Printf Callbacks

This is new in August 2013.

The dwarf_print_lines() function is intended as a helper to programs like
dwarfdump and show some line internal details in a way only the internals of libdwarf
can show them. But using printf directly in libdwarf means the caller has limited control
of where the output appears. So now the ’printf’ output is passed back to the caller
through a callback function whose implementation is provided by the caller.

Any code calling libdwarf can ignore the functions described in this section completely.
If the functions are ignored the messages (if any) from libdwarf will simply not appear
anywhere.

The libdwarf.h header file defines struct
Dwarf_Printf_Callback_Info_s and
dwarf_register_printf_callback for those libdwarf callers wishing to
implement the callback. In this section we describe how one uses that interface. The
applications dwarfdump and dwarfdump2 are examples of how these may be used.

6.5.1 dwarf_register_printf_callback

struct Dwarf_Printf_Callback_Info_s
dwarf_register_printf_callback(Dwarf_Debug dbg,
struct Dwarf_Printf_Callback_Info_s * newvalues);

The dwarf_register_printf_callback() function can only be called after the
Dwarf_Debug instance has been initialized, the call makes no sense at other times. The
function returns the current value of the structure. If newvalues is non-null then the
passed-in values are used to initialize the libdwarf internal callback data (the values

Rev 3.17 7 November 2020 - 51 -

- 52 -

returned are the values before the newvalues are recorded). If newvalues is null no
change is made to the libdwarf internal callback data.

6.5.2 Dwarf_Printf_Callback_Info_s

struct Dwarf_Printf_Callback_Info_s {
void * dp_user_pointer;
dwarf_printf_callback_function_type dp_fptr;
char * dp_buffer;
unsigned int dp_buffer_len;
int dp_buffer_user_provided;
void * dp_reserved;

};

First we describe the fields as applicable in setting up for a call to
dwarf_register_printf_callback().

The field dp_user_pointer is remembered by libdwarf and passed back in any call
libdwarf makes to the user’s callback function. It is otherwise ignored by libdwarf.

The field dp_fptr is either NULL or a pointer to a user-implemented function.

If the field dp_buffer_user_provided is non-zero then dp_buffer_len and
dp_buffer must be set by the user and libdwarf will use that buffer without doing any
malloc of space. If the field dp_buffer_user_provided is zero then the input
fields dp_buffer_len and dp_buffer are ignored by libdwarf and space is
malloc’d as needed.

The field dp_reserved is ignored, it is reserved for future use.

When the structure is returned by dwarf_register_printf_callback() the
values of the fields before the dwarf_register_printf_callback() call are
returned.

6.5.3 dwarf_printf_callback_function_type

typedef void (* dwarf_printf_callback_function_type)(void * user_pointer,
const char * linecontent);

Any application using the callbacks needs to use the function
dwarf_register_printf_callback() and supply a function matching the
above function prototype from libdwarf.h.

Rev 3.17 7 November 2020 - 52 -

- 53 -

6.5.4 Example of printf callback use in a C++ application using libdwarf

struct Dwarf_Printf_Callback_Info_s printfcallbackdata;
memset(&printfcallbackdata,0,sizeof(printfcallbackdata));
printfcallbackdata.dp_fptr = printf_callback_for_libdwarf;
dwarf_register_printf_callback(dbg,&printfcallbackdata);

Assuming the user implements something
like the following function in her application:

void
printf_callback_for_libdwarf(void *userdata,const char *data)
{

cout << data;
}

It is crucial that the user’s callback function copies or prints the data immediately. Once
the user callback function returns the data pointer may change or become stale without
warning.

6.6 Debugging Information Entry Delivery Operations

These functions are concerned with accessing debugging information entries, whether
from a .debug_info, .debug_types, .debug_info.dwo, or .debug_types.dwo .

Since all such sections use similar formats, one set of functions suffices.

6.6.1 dwarf_get_die_section_name()

int
dwarf_get_die_section_name(Dwarf_Debug dbg,

Dwarf_Bool is_info,
const char ** sec_name,
Dwarf_Error * error);

dwarf_get_die_section_name() lets consumers access the object section name
when no specific DIE is at hand. This is useful for applications wanting to print the
name, but of course the object section name is not really a part of the DWARF
information. Most applications will probably not call this function. It can be called at
any time after the Dwarf_Debug initialization is done. See also
dwarf_get_die_section_name_b().

The function dwarf_get_die_section_name() operates on the either the
.debug_info[.dwo] section (if is_info is non-zero) or .debug_types[.dwo] section (if
is_info is zero).

If the function succeeds, *sec_name is set to a pointer to a string with the object
section name and the function returns DW_DLV_OK. Do not free the string whose pointer

Rev 3.17 7 November 2020 - 53 -

- 54 -

is returned. For non-Elf objects it is possible the string pointer returned will be NULL or
will point to an empty string. It is up to the calling application to recognize this
possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

If there is an internal error detected the function returns DW_DLV_ERROR and sets the
*error pointer.

6.6.2 dwarf_get_die_section_name_b()

int
dwarf_get_die_section_name_b(Dwarf_Die die,

const char ** sec_name,
Dwarf_Error * error);

dwarf_get_die_section_name_b() lets consumers access the object section
name when one has a DIE. This is useful for applications wanting to print the name, but
of course the object section name is not really a part of the DWARF information. Most
applications will probably not call this function. It can be called at any time after the
Dwarf_Debug initialization is done. See also dwarf_get_die_section_name().

If the function succeeds, *sec_name is set to a pointer to a string with the object
section name and the function returns DW_DLV_OK. Do not free the string whose pointer
is returned. For non-Elf objects it is possible the string pointer returned will be NULL or
will point to an empty string. It is up to the calling application to recognize this
possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

If there is an internal error detected the function returns DW_DLV_ERROR and sets the
*error pointer.

6.6.3 dwarf_next_cu_header_d()

Rev 3.17 7 November 2020 - 54 -

- 55 -

int dwarf_next_cu_header_d(
Dwarf_debug dbg,
Dwarf_Bool is_info,
Dwarf_Unsigned *cu_header_length,
Dwarf_Half *version_stamp,
Dwarf_Unsigned *abbrev_offset,
Dwarf_Half *address_size,
Dwarf_Half *offset_size,
Dwarf_Half *extension_size,
Dwarf_Sig8 *signature,
Dwarf_Unsigned *typeoffset
Dwarf_Unsigned *next_cu_header,
Dwarf_Half *header_cu_type,
Dwarf_Error *error);

The function dwarf_next_cu_header_d() operates on the either the .debug_info
section (if is_info is non-zero) or .debug_types section (if is_info is zero). It
returns DW_DLV_ERROR if it fails, and DW_DLV_OK if it succeeds.

If it succeeds, *next_cu_header is set to the offset in the .debug_info section of the
next compilation-unit header if it succeeds. On reading the last compilation-unit header
in the .debug_info section it contains the size of the .debug_info or debug_types section.
Beginning 22 April 2019 next_cu_header will not be used to return the offset if
next_cu_header is null. Be cautious using a null argument unless you know that
only a suitably recent version of libdwarf will be used.

The next call to dwarf_next_cu_header_b() returns DW_DLV_NO_ENTRY
without reading a compilation-unit or setting *next_cu_header. Subsequent calls to
dwarf_next_cu_header() repeat the cycle by reading the first compilation-unit
and so on.

The other values returned through pointers are the values in the compilation-unit header.
If any of cu_header_length, version_stamp, abbrev_offset,
address_size, offset_size, extension_size, signature, or
typeoffset, is NULL, the argument is ignored (meaning it is not an error to provide a
NULL pointer for any or all of these arguments).

cu_header_length returns the length in bytes of the compilation unit header.

version_stamp returns the section version, which would be (for .debug_info) 2 for
DWARF2, 3 for DWARF3, 4 for DWARF4, or 5 for DWARF5..

abbrev_offset returns the .debug_abbrev section offset of the abbreviations for this
compilation unit.

address_size returns the size of an address in this compilation unit. Which is
usually 4 or 8.

offset_size returns the size in bytes of an offset for the compilation unit. The offset
size is 4 for 32bit dwarf and 8 for 64bit dwarf. This is the offset size in dwarf data, not

Rev 3.17 7 November 2020 - 55 -

- 56 -

the address size inside the executable code. The offset size can be 4 even if embedded in
a 64bit elf file (which is normal for 64bit elf), and can be 8 even in a 32bit elf file (which
probably will never be seen in practice).

The extension_size pointer is only relevant if the offset_size pointer returns 8.
The value is not normally useful but is returned through the pointer for completeness.
The pointer extension_size returns 0 if the CU is MIPS/IRIX non-standard 64bit
dwarf (MIPS/IRIX 64bit dwarf was created years before DWARF3 defined 64bit dwarf)
and returns 4 if the dwarf uses the standard 64bit extension (the 4 is the size in bytes of
the 0xffffffff in the initial length field which indicates the following 8 bytes in the
.debug_info section are the real length). See the DWARF3 or DWARF4 standard, section
7.4.

The signature pointer is only relevant if
the CU has a type signature, and if relevant the 8 byte type signature of the .debug_types
CU header is assigned through the pointer.

The typeoffset pointer is only relevant the CU has a type signature if relevant the
local offset within the CU of the the type offset the .debug_types entry represents is
assigned through the pointer. The typeoffset matters because a DW_AT_type
referencing the type unit may reference an inner type, such as a C++ class in a C++
namespace, but the type itself has the enclosing namespace in the .debug_type type_unit.

The header_cu_type pointer is applicable to all CU headers. The value returned
through the pointer is either DW_UT_compile DW_UT_partial DW_UT_type and
identifies the header type of this CU. In DWARF4 a DW_UT_type will be in
.debug_types, but in DWARF5 these compilation units are in .debug_info and the
Debug Fission (ie Split Dwarf) .debug_info.dwo sections .

6.6.4 dwarf_next_cu_header_c()

int dwarf_next_cu_header_c(
Dwarf_debug dbg,
Dwarf_Bool is_info,
Dwarf_Unsigned *cu_header_length,
Dwarf_Half *version_stamp,
Dwarf_Unsigned *abbrev_offset,
Dwarf_Half *address_size,
Dwarf_Half *offset_size,
Dwarf_Half *extension_size,
Dwarf_Sig8 *signature,
Dwarf_Unsigned *typeoffset
Dwarf_Unsigned *next_cu_header,
Dwarf_Error *error);

The function dwarf_next_cu_header_c() operates on the either the .debug_info
section (if is_info is non-zero) or .debug_types section (if is_info is zero).

It operates exactly like dwarf_next_cu_header_d() but is missing the

Rev 3.17 7 November 2020 - 56 -

- 57 -

header_type field. This is kept for compatibility. All code using this should be
changed to use dwarf_next_cu_header_d()

6.6.5 dwarf_next_cu_header_b()

int dwarf_next_cu_header_b(
Dwarf_debug dbg,
Dwarf_Unsigned *cu_header_length,
Dwarf_Half *version_stamp,
Dwarf_Unsigned *abbrev_offset,
Dwarf_Half *address_size,
Dwarf_Half *offset_size,
Dwarf_Half *extension_size,
Dwarf_Unsigned *next_cu_header,
Dwarf_Error *error);

This is obsolete as of October 2011 though supported.

The function dwarf_next_cu_header_b() operates on the .debug_info section. It
operates exactly like dwarf_next_cu_header_c() but is missing the
signature, and typeoffset fields. This is kept for compatibility. All code using
this should be changed to use dwarf_next_cu_header_c()

6.6.6 dwarf_next_cu_header()

The following is the original form, missing the offset_size, extension_size,
signature, and typeoffset fields in dwarf_next_cu_header_c(). This is
kept for compatibility. All code using this should be changed to use
dwarf_next_cu_header_c()

int dwarf_next_cu_header(
Dwarf_debug dbg,
Dwarf_Unsigned *cu_header_length,
Dwarf_Half *version_stamp,
Dwarf_Unsigned *abbrev_offset,
Dwarf_Half *address_size,
Dwarf_Unsigned *next_cu_header,
Dwarf_Error *error);

6.6.7 dwarf_siblingof_b()

Rev 3.17 7 November 2020 - 57 -

- 58 -

int dwarf_siblingof_b(
Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Bool is_info,
Dwarf_Die *return_sib,
Dwarf_Error *error)

The function dwarf_siblingof_b() returns DW_DLV_ERROR and sets the error
pointer on error. If there is no sibling it returns DW_DLV_NO_ENTRY. When it
succeeds, dwarf_siblingof_b() returns DW_DLV_OK and sets *return_sib to
the Dwarf_Die descriptor of the sibling of die.

If is_info is non-zero then the die is assumed to refer to a .debug_info DIE. If
is_info is zero then the die is assumed to refer to a .debug_types DIE. Note that the
first call (the call that gets the compilation-unit DIE in a compilation unit) passes in a
NULL die so having the caller pass in is_info is essential. And if die is non-NULL
it is still essential for the call to pass in is_info set properly to reflect the section the
DIE came from. The function dwarf_get_die_infotypes_flag() is of interest
as it returns the proper is_info value from any non-NULL die pointer.

If die is NULL, the Dwarf_Die descriptor of the first die in the compilation-unit is
returned. This die has the DW_TAG_compile_unit, DW_TAG_partial_unit, or
DW_TAG_type_unit tag.

Figure 11. Example4 dwarf_siblingof()

void example4(Dwarf_Debug dbg,Dwarf_Die in_die,Dwarf_Bool is_info)
{

Dwarf_Die return_sib = 0;
Dwarf_Error error = 0;
int res = 0;

/* in_die might be NULL or a valid Dwarf_Die */
res = dwarf_siblingof_b(dbg,in_die,is_info,&return_sib, &error);
if (res == DW_DLV_OK) {

/* Use return_sib here. */
dwarf_dealloc_die(return_sib);
/* This original form still works.

dwarf_dealloc(dbg, return_sib, DW_DLA_DIE);
*/
/* return_sib is no longer usable for anything, we

ensure we do not use it accidentally with: */
return_sib = 0;

}
}

Rev 3.17 7 November 2020 - 58 -

- 59 -

6.6.8 dwarf_siblingof()

int dwarf_siblingof(
Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Die *return_sib,
Dwarf_Error *error)

int dwarf_siblingof() operates exactly the same as int
dwarf_siblingof_b(), but int dwarf_siblingof() refers only to
.debug_info DIEs.

6.6.9 dwarf_child()

int dwarf_child(
Dwarf_Die die,
Dwarf_Die *return_kid,
Dwarf_Error *error)

The function dwarf_child() returns DW_DLV_ERROR and sets the error die on
error. If there is no child it returns DW_DLV_NO_ENTRY. When it succeeds,
dwarf_child() returns DW_DLV_OK and sets *return_kid to the Dwarf_Die
descriptor of the first child of die. The function dwarf_siblingof() can be used
with the return value of dwarf_child() to access the other children of die.

Figure 12. Example5 dwarf_child()

void example5(Dwarf_Die in_die)
{

Dwarf_Die return_kid = 0;
Dwarf_Error error = 0;
int res = 0;

res = dwarf_child(in_die,&return_kid, &error);
if (res == DW_DLV_OK) {

/* Use return_kid here. */
dwarf_dealloc_die(return_kid);
/* The original form of dealloc still works

dwarf_dealloc(dbg, return_kid, DW_DLA_DIE);
*/

/* return_die is no longer usable for anything, we
ensure we do not use it accidentally with: */

return_kid = 0;
}

}

Rev 3.17 7 November 2020 - 59 -

- 60 -

6.6.10 dwarf_offdie_b()

int dwarf_offdie_b(
Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Bool is_info,
Dwarf_Die *return_die,
Dwarf_Error *error)

The function dwarf_offdie_b() returns DW_DLV_ERROR and sets the error die
on error. When it succeeds, dwarf_offdie_b() returns DW_DLV_OK and sets
*return_die to the the Dwarf_Die descriptor of the debugging information entry at
offset in the section containing debugging information entries i.e the .debug_info
section. A return of DW_DLV_NO_ENTRY means that the offset in the section is of a
byte containing all 0 bits, indicating that there is no abbreviation code. Meaning this ’die
offset’ is not the offset of a real die, but is instead an offset of a null die, a padding die, or
of some random zero byte: this should not be returned in normal use.

It is the user’s responsibility to make sure that offset is the start of a valid debugging
information entry. The result of passing it an invalid offset could be chaos.

If is_info is non-zero the offset must refer to a .debug_info section offset. If
is_info zero the offset must refer to a .debug_types section offset. Error returns or
misleading values may result if the is_info flag or the offset value are incorrect.

Figure 13. Example6 dwarf_offdie_b()

Rev 3.17 7 November 2020 - 60 -

- 61 -

void example6(Dwarf_Debug dbg,Dwarf_Off die_offset,Dwarf_Bool is_info)
{

Dwarf_Error error = 0;
Dwarf_Die return_die = 0;
int res = 0;

res = dwarf_offdie_b(dbg,die_offset,is_info,&return_die, &error);
if (res == DW_DLV_OK) {

/* Use return_die here. */
dwarf_dealloc_die(return_die);
/* The original form still works:

dwarf_dealloc(dbg, return_die, DW_DLA_DIE);
*/
/* return_die is no longer usable for anything, we

ensure we do not use it accidentally with: */
return_die = 0;

} else {
/* res could be NO ENTRY or ERROR, so no

dealloc necessary. */
}

}

6.6.11 dwarf_offdie()

int dwarf_offdie(
Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Die *return_die,
Dwarf_Error *error)

The function dwarf_offdie() is obsolete, use dwarf_offdie_b() instead. The
function is still supported in the library, but only references the .debug_info section.

6.6.12 dwarf_validate_die_sibling()

int validate_die_sibling(
Dwarf_Die sibling,
Dwarf_Off *offset)

When used correctly in a depth-first walk of a DIE tree this function validates that any
DW_AT_sibling attribute gives the same offset as the direct tree walk. That is the only
purpose of this function.

The function dwarf_validate_die_sibling() returns DW_DLV_OK if the last
die processed in a depth-first DIE tree walk was the same offset as generated by a call to

Rev 3.17 7 November 2020 - 61 -

- 62 -

dwarf_siblingof(). Meaning that the DW_AT_sibling attribute value, if any, was
correct.

If the conditions are not met then DW_DLV_ERROR is returned and *offset is set to
the offset in the .debug_info section of the last DIE processed. If the application prints
the offset a knowledgeable user may be able to figure out what the compiler did wrong.

6.7 Debugging Information Entry Query Operations

These queries return specific information about debugging information entries or a
descriptor that can be used on subsequent queries when given a Dwarf_Die descriptor.
Note that some operations are specific to debugging information entries that are
represented by a Dwarf_Die descriptor of a specific type. For example, not all
debugging information entries contain an attribute having a name, so consequently, a call
to dwarf_diename() using a Dwarf_Die descriptor that does not have a name
attribute will return DW_DLV_NO_ENTRY. This is not an error, i.e. calling a function
that needs a specific attribute is not an error for a die that does not contain that specific
attribute.

There are several methods that can be used to obtain the value of an attribute in a given
die:

1. Call dwarf_hasattr() to determine if the debugging information entry has
the attribute of interest prior to issuing the query for information about the
attribute.

2. Supply an error argument, and check its value after the call to a query indicates
an unsuccessful return, to determine the nature of the problem. The error
argument will indicate whether an error occurred, or the specific attribute needed
was missing in that die.

3. Arrange to have an error handling function invoked upon detection of an error
(see dwarf_init()).

4. Call dwarf_attrlist() and iterate through the returned list of attributes,
dealing with each one as appropriate.

6.7.1 dwarf_get_die_infotypes_flag()

Dwarf_Bool dwarf_get_die_infotypes_flag(Dwarf_Die die)

The function dwarf_tag() returns the section flag indicating which section the DIE
originates from. If the returned value is non-zero the DIE originates from the
.debug_info section. If the returned value is zero the DIE originates from the
.debug_types section.

Rev 3.17 7 November 2020 - 62 -

- 63 -

6.7.2 dwarf_tag()

int dwarf_tag(
Dwarf_Die die,
Dwarf_Half *tagval,
Dwarf_Error *error)

The function dwarf_tag() returns the tag of die through the pointer tagval if it
succeeds. It returns DW_DLV_OK if it succeeds. It returns DW_DLV_ERROR on error.

6.7.3 dwarf_dieoffset()

int dwarf_dieoffset(
Dwarf_Die die,
Dwarf_Off * return_offset,
Dwarf_Error *error)

When it succeeds, the function dwarf_dieoffset() returns DW_DLV_OK and sets
*return_offset to the position of die in the section containing debugging
information entries (the return_offset is a section-relative offset). In other words, it
sets return_offset to the offset of the start of the debugging information entry
described by die in the section containing dies i.e .debug_info. It returns
DW_DLV_ERROR on error.

6.7.4 dwarf_addr_form_is_indexed()

dwarf_addr_form_is_indexed(form) is a utility function to make it simple to
determine if a form is one of the indexed forms (there are several such in DWARF5). See
DWARF5 section 7.5.5 Classes and Forms for more information.

int dwarf_addr_form_is_indexed(Dwarf_Half form);

It returns TRUE if the form is one of the indexed address forms (such as
DW_FORM_addrx1) and FALSE otherwise.

6.7.5 dwarf_debug_addr_index_to_addr()

int dwarf_debug_addr_index_to_addr(Dwarf_Die /*die*/,
Dwarf_Unsigned index,
Dwarf_Addr * return_addr,
Dwarf_Error * error);

Attributes with form DW_FORM_addrx, the operation DW_OP_addrx, or certain of the
split-dwarf location list entries give an index value to a machine address in the
.debug_addr section (which is always in .debug_addr even when the form/operation are in
a split dwarf .dwo section).

On successful return this function turns such an index into a target address value through

Rev 3.17 7 November 2020 - 63 -

- 64 -

the pointer return_addr .

If there is an error this may return DW_ DW_DLV_ERROR and it will have returned an
error through *error.

If there is no available .debug_addr section this may return DW_DLV_NO_ENTRY.

6.7.6 dwarf_die_CU_offset()

int dwarf_die_CU_offset(
Dwarf_Die die,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_die_CU_offset() is similar to dwarf_dieoffset(),
except that it puts the offset of the DIE represented by the Dwarf_Die die, from the
start of the compilation-unit that it belongs to rather than the start of .debug_info (the
return_offset is a CU-relative offset).

6.7.7 dwarf_die_offsets()

int dwarf_die_offsets(
Dwarf_Die die,
Dwarf_Off *global_off,
Dwarf_Off *cu_off,
Dwarf_Error *error)

The function dwarf_die_offsets() is a combination of dwarf_dieoffset()
and dwarf_die_cu_offset() in that it returns both the global .debug_info offset
and the CU-relative offset of the die in a single call.

6.7.8 dwarf_ptr_CU_offset()

int dwarf_ptr_CU_offset(
Dwarf_CU_Context cu_context,
Dwarf_Byte_ptr di_ptr ,
Dwarf_Off *cu_off)

Given a valid CU context pointer and a pointer into that CU context, the function
dwarf_ptr_CU_offset() returns DW_DLV_OK and sets *cu_off to the CU-
relative (local) offset in that CU.

6.7.9 dwarf_CU_dieoffset_given_die()

Rev 3.17 7 November 2020 - 64 -

- 65 -

int dwarf_CU_dieoffset_given_die(
Dwarf_Die given_die,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_CU_dieoffset_given_die() is similar to
dwarf_die_CU_offset(), except that it puts the global offset of the CU DIE
owning given_die of .debug_info (the return_offset is a global section offset).

This is useful when processing a DIE tree and encountering an error or other surprise in a
DIE, as the return_offset can be passed to dwarf_offdie_b() to return a
pointer to the CU die of the CU owning the given_die passed to
dwarf_CU_dieoffset_given_die(). The consumer can extract information from
the CU die and the given_die (in the normal way) and print it.

An example (a snippet) of code using this function follows. It assumes that in_die is a
DIE in .debug_info that, for some reason, you have decided needs CU context printed
(assuming print_die_data does some reasonable printing).

Figure 14. Example7 dwarf_CU_dieoffset_given_die()

void example7(Dwarf_Debug dbg, Dwarf_Die in_die,Dwarf_Bool is_info)
{

int res = 0;
Dwarf_Off cudieoff = 0;
Dwarf_Die cudie = 0;
Dwarf_Error error = 0;

res = dwarf_CU_dieoffset_given_die(in_die,&cudieoff,&error);
if(res != DW_DLV_OK) {

/* FAIL */
return;

}
res = dwarf_offdie_b(dbg,cudieoff,is_info,&cudie,&error);
if(res != DW_DLV_OK) {

/* FAIL */
return;

}
/* do something with cu_die */
dwarf_dealloc_die(cudie);
/* The original form still works.

dwarf_dealloc(dbg,cudie, DW_DLA_DIE);
*/

}
y

Rev 3.17 7 November 2020 - 65 -

- 66 -

6.7.10 dwarf_die_CU_offset_range()

int dwarf_die_CU_offset_range(
Dwarf_Die die,
Dwarf_Off *cu_global_offset,
Dwarf_Off *cu_length,
Dwarf_Error *error)

The function dwarf_die_CU_offset_range() returns the offset of the beginning
of the CU and the length of the CU. The offset and length are of the entire CU that this
DIE is a part of. It is used by dwarfdump (for example) to check the validity of offsets.
Most applications will have no reason to call this function.

6.7.11 dwarf_diename()

int dwarf_diename(
Dwarf_Die die,
char ** return_name,
Dwarf_Error *error)

When it succeeds, the function dwarf_diename() returns DW_DLV_OK and sets
*return_name to a pointer to a null-terminated string of characters that represents the
name attribute (DW_AT_name) of die.

The storage pointed to by a successful return of dwarf_diename() should not be
freed as the text is a string in static memory (for some error cases) or a string residing in a
DWARF data section.

Up to March 2020 this document said that dwarf_dealloc with DW_DLA_STRING
should be applied to the string returned through the pointer. That was always incorrect.
However, doing the dwarf_dealloc(dbg,xxx,DW_DLA_STRING) that was previously
called for does not result in any error (dwarf_dealloc avoids freeing strings like this).

It returns DW_DLV_NO_ENTRY if die does not have a name attribute. It returns
DW_DLV_ERROR if an error occurred.

6.7.12 dwarf_die_text()

int dwarf_die_text(
Dwarf_Die die,
Dwarf_Half attrnum,
char ** return_name,
Dwarf_Error *error)

When it succeeds, the function dwarf_die_text() returns DW_DLV_OK and sets
*return_name to a pointer to a null-terminated string of characters that represents a
string-value attribute of die if an attribute attrnum is present.

The storage pointed to by a successful return of dwarf_die_text() must never be

Rev 3.17 7 November 2020 - 66 -

- 67 -

freed, the string is in the DWARF data and is not dynamically allocated.

As of March 2020 the description here has been corrected. dwarf_dealloc() should
never hav e been applied to a string returned by dwarf_die_text().

It returns DW_DLV_NO_ENTRY if die does not have the attribute attrnum. It returns
DW_DLV_ERROR if an error occurred.

6.7.13 dwarf_die_abbrev_code()

int dwarf_die_abbrev_code(Dwarf_Die die)

The function returns the abbreviation code of the DIE. That is, it returns the abbreviation
"index" into the abbreviation table for the compilation unit of which the DIE is a part. It
cannot fail. No errors are possible. The pointer die() must not be NULL.

6.7.14 dwarf_die_abbrev_children_flag()

int dwarf_die_abbrev_children_flag(Dwarf_Die die,
Dwarf_Half *has_child)

The function returns the has-children flag of the die passed in through the
*has_child passed in and returns DW_DLV_OK on success. A non-zero value of
*has_child means the die has children.

On failure it returns DW_DLV_ERROR.

The function was developed to let consumer code do better error reporting in some
circumstances, it is not generally needed.

6.7.15 dwarf_die_abbrev_global_offset()

int dwarf_die_abbrev_global_offset(Dwarf_Die die,
Dwarf_Off * abbrev_offset,
Dwarf_Unsigned * abbrev_count,
Dwarf_Error* error);

The function allows more detailed printing of abbreviation data. It is handy for analyzing
abbreviations but is not normally needed by applications. The function first appears in
March 2016.

On success the function returns DW_DLV_OK and sets *abbrev_offset to the global
offset in the .debug_abbrev section of the abbreviation. It also sets
*abbrev_count to the number of attribute/form pairs in the abbreviation entry. It is
possible, though unusual, for the count to be zero (meaning there is abbreviation instance
and a TAG instance which have no attributes).

On failure it returns DW_DLV_ERROR and sets *error

It should never return DW_DLV_NO_ENTRY, but callers should allow for that possibility..

Rev 3.17 7 November 2020 - 67 -

- 68 -

6.7.16 dwarf_get_version_of_die()

int dwarf_get_version_of_die(Dwarf_Die die,
Dwarf_Half *version,
Dwarf_Half *offset_size)

The function returns the CU context version through *version and the CU context
offset-size through *offset_size and returns DW_DLV_OK on success.

In case of error, the only errors possible involve an inappropriate NULL die pointer so
no Dwarf_Debug pointer is available. Therefore setting a Dwarf_Error would not be very
meaningful (there is no Dwarf_Debug to attach it to). The function returns
DW_DLV_ERROR on error.

The values returned through the pointers are the values two arguments to
dwarf_get_form_class() requires.

6.7.17 dwarf_attrlist()

int dwarf_attrlist(
Dwarf_Die die,
Dwarf_Attribute** attrbuf,
Dwarf_Signed *attrcount,
Dwarf_Error *error)

When it returns DW_DLV_OK, the function dwarf_attrlist() sets attrbuf to
point to an array of Dwarf_Attribute descriptors corresponding to each of the
attributes in die, and returns the number of elements in the array through attrcount.
DW_DLV_NO_ENTRY is returned if the count is zero (no attrbuf is allocated in this
case). DW_DLV_ERROR is returned on error. On a successful return from
dwarf_attrlist(), each of the Dwarf_Attribute descriptors should be
individually freed using dwarf_dealloc() with the allocation type DW_DLA_ATTR,
followed by free-ing the list pointed to by *attrbuf using dwarf_dealloc() with
the allocation type DW_DLA_LIST, when no longer of interest (see
dwarf_dealloc()).

Freeing the attrlist:

Figure 15. Example8 dwarf_attrlist() free

Rev 3.17 7 November 2020 - 68 -

- 69 -

void example8(Dwarf_Debug dbg, Dwarf_Die somedie)
{

Dwarf_Signed atcount = 0;
Dwarf_Attribute *atlist = 0;
Dwarf_Error error = 0;
int errv = 0;

errv = dwarf_attrlist(somedie, &atlist,&atcount, &error);
if (errv == DW_DLV_OK) {

Dwarf_Signed i = 0;

for (i = 0; i < atcount; ++i) {
/* use atlist[i] */
dwarf_dealloc_attribute(atlist[i]);
/* The original form still works.

dwarf_dealloc(dbg, atlist[i], DW_DLA_ATTR);
*/

}
dwarf_dealloc(dbg, atlist, DW_DLA_LIST);

}
}

6.7.18 dwarf_hasattr()

int dwarf_hasattr(
Dwarf_Die die,
Dwarf_Half attr,
Dwarf_Bool *return_bool,
Dwarf_Error *error)

When it succeeds, the function dwarf_hasattr() returns DW_DLV_OK and sets
*return_bool to non-zero if die has the attribute attr and zero otherwise. If it
fails, it returns DW_DLV_ERROR.

6.7.19 dwarf_attr()

int dwarf_attr(
Dwarf_Die die,
Dwarf_Half attr,
Dwarf_Attribute *return_attr,
Dwarf_Error *error)

When it returns DW_DLV_OK, the function dwarf_attr() sets *return_attr to
the Dwarf_Attribute descriptor of die having the attribute attr. It returns
DW_DLV_NO_ENTRY if attr is not contained in die. It returns DW_DLV_ERROR if
an error occurred.

Rev 3.17 7 November 2020 - 69 -

- 70 -

6.7.20 dwarf_lowpc()

int dwarf_lowpc(
Dwarf_Die die,
Dwarf_Addr * return_lowpc,
Dwarf_Error * error)

The function dwarf_lowpc() returns DW_DLV_OK and sets *return_lowpc to the
low program counter value associated with the die descriptor if die represents a
debugging information entry with the DW_AT_low_pc attribute. It returns
DW_DLV_NO_ENTRY if die does not have this attribute. It returns DW_DLV_ERROR if
an error occurred.

6.7.21 dwarf_highpc_b()

int dwarf_highpc_b(
Dwarf_Die die,
Dwarf_Addr * return_highpc,
Dwarf_Half * return_form*/,
enum Dwarf_Form_Class * return_class*/,
Dwarf_Error *error)

The function dwarf_highpc_b() returns DW_DLV_OK and sets *return_highpc
to the value of the DW_AT_high_pc attribute.

It also sets *return_form to the FORM of the attribute. Beginning 22 April 2019
return_form will not be used to return the form class if return_form is null. Be
cautious using a null argument unless you know that only a suitably recent version of
libdwarf will be used.

It sets *return_class to the form class of the attribute. Beginning 22 April 2019
return_class will not be used to return the form class if return_class is null.
Be cautious using a null argument unless you know that only a suitably recent version of
libdwarf will be used.

If the form class returned is DW_FORM_CLASS_ADDRESS the return_highpc is an
actual pc address (1 higher than the address of the last pc in the address range).. If the
form class returned is DW_FORM_CLASS_CONSTANT the return_highpc is an
offset from the value of the the DIE’s low PC address (see DWARF4 section 2.17.2
Contiguous Address Range).

It returns DW_DLV_NO_ENTRY if die does not have the DW_AT_high_pc attribute.

It returns DW_DLV_ERROR if an error occurred.

Rev 3.17 7 November 2020 - 70 -

- 71 -

6.7.22 dwarf_highpc()

int dwarf_highpc(
Dwarf_Die die,
Dwarf_Addr * return_highpc,
Dwarf_Error *error)

The function dwarf_highpc() returns DW_DLV_OK and sets *return_highpc
the high program counter value associated with the die descriptor if die represents a
debugging information entry with the DW_AT_high_pc attribute and the form is
DW_FORM_addr (meaning the form is of class address).

This function is useless for a DW_AT_high_pc which is encoded as a constant (which
was first possible in DWARF4).

It returns DW_DLV_NO_ENTRY if die does not have this attribute.

It returns DW_DLV_ERROR if an error occurred or if the form is not of class address.

6.7.23 dwarf_dietype_offset()

int dwarf_dietype_offset(Dwarf_Die /*die*/,
Dwarf_Off * /*return_off*/,
Dwarf_Error * /*error*/);

On success the function dwarf_dietype_offset() returns the offset referred to by
DW_AT_type attribute of die.

DW_DLV_NO_ENTRY is returned if the die has no DW_AT_type attribute.

DW_DLV_ERROR is returned if an error is detected.

This feature was introduced in February 2016.

6.7.24 dwarf_offset_list()

int dwarf_offset_list(Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Bool is_info,
Dwarf_Off ** offbuf,
Dwarf_Unsigned * offcnt,
Dwarf_Error * error);

On success The function dwarf_offset_list() returns DW_DLV_OK and sets
*offbuf to point to an array of the offsets of the direct children of the die at offset.
It sets *offcnt to point to the count of entries in the offset array

In case of error it returns DW_DLV_OK.

It does not return DW_DLV_NO_ENTRY but callers should allow for that possibility
anyway.

This feature was introduced in March 2016.

Rev 3.17 7 November 2020 - 71 -

- 72 -

Freeing the offset_list is done as follows.:

Figure 16. Exampleoffset_list dwarf_offset_list() free

void exampleoffset_list(Dwarf_Debug dbg, Dwarf_Off dieoffset,
Dwarf_Bool is_info)

{
Dwarf_Unsigned offcnt = 0;
Dwarf_Off *offbuf = 0;
Dwarf_Error error = 0;
int errv = 0;

errv = dwarf_offset_list(dbg,dieoffset, is_info,
&offbuf,&offcnt, &error);

if (errv == DW_DLV_OK) {
Dwarf_Unsigned i = 0;

for (i = 0; i < offcnt; ++i) {
/* use offbuf[i] */

}
dwarf_dealloc(dbg, offbuf, DW_DLA_LIST);

}
}

6.7.25 dwarf_bytesize()

Dwarf_Signed dwarf_bytesize(
Dwarf_Die die,
Dwarf_Unsigned *return_size,
Dwarf_Error *error)

When it succeeds, dwarf_bytesize() returns DW_DLV_OK and sets
*return_size to the number of bytes needed to contain an instance of the aggregate
debugging information entry represented by die. It returns DW_DLV_NO_ENTRY if
die does not contain the byte size attribute DW_AT_byte_size. It returns
DW_DLV_ERROR if an error occurred.

6.7.26 dwarf_bitsize()

int dwarf_bitsize(
Dwarf_Die die,
Dwarf_Unsigned *return_size,
Dwarf_Error *error)

When it succeeds, dwarf_bitsize() returns DW_DLV_OK and sets

Rev 3.17 7 November 2020 - 72 -

- 73 -

*return_size to the number of bits occupied by the bit field value that is an attribute
of the given die. It returns DW_DLV_NO_ENTRY if die does not contain the bit size
attribute DW_AT_bit_size. It returns DW_DLV_ERROR if an error occurred.

6.7.27 dwarf_bitoffset()

int dwarf_bitoffset(
Dwarf_Die die,
Dwarf_Unsigned *return_size,
Dwarf_Error *error)

When it succeeds, dwarf_bitoffset() returns DW_DLV_OK and sets
*return_size to the number of bits to the left of the most significant bit of the bit
field value. This bit offset is not necessarily the net bit offset within the structure or class
, since DW_AT_data_member_location may give a byte offset to this DIE and the
bit offset returned through the pointer does not include the bits in the byte offset. It
returns DW_DLV_NO_ENTRY if die does not contain the bit offset attribute
DW_AT_bit_offset. It returns DW_DLV_ERROR if an error occurred.

6.7.28 dwarf_srclang()

int dwarf_srclang(
Dwarf_Die die,
Dwarf_Unsigned *return_lang,
Dwarf_Error *error)

When it succeeds, dwarf_srclang() returns DW_DLV_OK and sets
*return_lang to a code indicating the source language of the compilation unit
represented by the descriptor die. It returns DW_DLV_NO_ENTRY if die does not
represent a source file debugging information entry (i.e. contain the attribute
DW_AT_language). It returns DW_DLV_ERROR if an error occurred.

6.7.29 dwarf_arrayorder()

int dwarf_arrayorder(
Dwarf_Die die,
Dwarf_Unsigned *return_order,
Dwarf_Error *error)

When it succeeds, dwarf_arrayorder() returns DW_DLV_OK and sets
*return_order a code indicating the ordering of the array represented by the
descriptor die. It returns DW_DLV_NO_ENTRY if die does not contain the array order
attribute DW_AT_ordering. It returns DW_DLV_ERROR if an error occurred.

6.8 Attribute Queries

Based on the attributes form, these operations are concerned with returning uninterpreted

Rev 3.17 7 November 2020 - 73 -

- 74 -

attribute data. Since it is not always obvious from the return value of these functions if an
error occurred, one should always supply an error parameter or have arranged to have
an error handling function invoked (see dwarf_init()) to determine the validity of
the returned value and the nature of any errors that may have occurred.

A Dwarf_Attribute descriptor describes an attribute of a specific die. Thus, each
Dwarf_Attribute descriptor is implicitly associated with a specific die.

6.8.1 dwarf_hasform()

int dwarf_hasform(
Dwarf_Attribute attr,
Dwarf_Half form,
Dwarf_Bool *return_hasform,
Dwarf_Error *error)

The function dwarf_hasform() returns DW_DLV_OK and and puts a non-zero

value in the *return_hasform boolean if the attribute represented by the
Dwarf_Attribute descriptor attr has the attribute form form. If the attribute does
not have that form zero is put into *return_hasform. DW_DLV_ERROR is returned
on error.

6.8.2 dwarf_whatform()

int dwarf_whatform(
Dwarf_Attribute attr,
Dwarf_Half *return_form,
Dwarf_Error *error)

When it succeeds, dwarf_whatform() returns DW_DLV_OK and sets
*return_form to the attribute form code of the attribute represented by the
Dwarf_Attribute descriptor attr. It returns DW_DLV_ERROR on error.

An attribute using DW_FORM_indirect effectively has two forms. This function returns
the ’final’ form for DW_FORM_indirect, not the DW_FORM_indirect itself. This
function is what most applications will want to call.

6.8.3 dwarf_whatform_direct()

int dwarf_whatform_direct(
Dwarf_Attribute attr,
Dwarf_Half *return_form,
Dwarf_Error *error)

When it succeeds, dwarf_whatform_direct() returns DW_DLV_OK and sets
*return_form to the attribute form code of the attribute represented by the
Dwarf_Attribute descriptor attr. It returns DW_DLV_ERROR on error. An

Rev 3.17 7 November 2020 - 74 -

- 75 -

attribute using DW_FORM_indirect effectively has two forms. This returns the form
’directly’ in the initial form field. That is, it returns the ’initial’ form of the attribute.

So when the form field is DW_FORM_indirect this call returns the
DW_FORM_indirect form, which is sometimes useful for dump utilities.

It is confusing that the _direct() function returns DW_FORM_indirect if an indirect form
is involved. Just think of this as returning the initial form the first form value seen for the
attribute, which is also the final form unless the initial form is DW_FORM_indirect.

6.8.4 dwarf_whatattr()

int dwarf_whatattr(
Dwarf_Attribute attr,
Dwarf_Half *return_attr,
Dwarf_Error *error)

When it succeeds, dwarf_whatattr() returns DW_DLV_OK and sets
*return_attr to the attribute code represented by the Dwarf_Attribute
descriptor attr. It returns DW_DLV_ERROR on error.

6.8.5 dwarf_formref()

int dwarf_formref(
Dwarf_Attribute attr,
Dwarf_Off *return_offset,
Dwarf_Error *error)

When it succeeds, dwarf_formref() returns DW_DLV_OK and sets
*return_offset to the CU-relative offset represented by the descriptor attr if the
form of the attribute belongs to the REFERENCE class. attr must be a CU-local
reference, not form DW_FORM_ref_addr and not DW_FORM_sec_offset . It is an
error for the form to not belong to the REFERENCE class. It returns DW_DLV_ERROR on
error.

Beginning November 2010: All DW_DLV_ERROR returns set *return_offset. Most
errors set *return_offset to zero, but for error
DW_DLE_ATTR_FORM_OFFSET_BAD the function sets *return_offset to the
invalid offset (which allows the caller to print a more detailed error message).

See also dwarf_global_formref below.

6.8.6 dwarf_global_formref()

Rev 3.17 7 November 2020 - 75 -

- 76 -

int dwarf_global_formref(
Dwarf_Attribute attr,
Dwarf_Off *return_offset,
Dwarf_Error *error)

When it succeeds, dwarf_global_formref() returns DW_DLV_OK and sets
*return_offset to the section-relative offset represented by the descriptor attr if
the form of the attribute belongs to the REFERENCE or other section-references classes.

attr can be any leg al REFERENCE class form plus DW_FORM_ref_addr or
DW_FORM_sec_offset. It is an error for the form to not belong to one of the
reference classes. It returns DW_DLV_ERROR on error. See also dwarf_formref
above.

The caller must determine which section the offset returned applies to. The function
dwarf_get_form_class() is useful to determine the applicable section.

The function converts CU relative offsets from forms such as DW_FORM_ref4 into
global section offsets.

6.8.7 dwarf_convert_to_global_offset()

int dwarf_convert_to_global_offset(
Dwarf_Attribute attr,
Dwarf_Off offset,
Dwarf_Off *return_offset,
Dwarf_Error *error)

When it succeeds, dwarf_convert_to_global_offset() returns DW_DLV_OK
and sets *return_offset to the section-relative offset represented by the cu-relative
offset offset if the form of the attribute belongs to the REFERENCE class. attr must
be a CU-local reference (DWARF class REFERENCE) or form DW_FORM_ref_addr
and the attr must be directly relevant for the calculated *return_offset to mean
anything.

The function returns DW_DLV_ERROR on error.

The function is not strictly necessary but may be a convenience for attribute printing in
case of error.

6.8.8 dwarf_formaddr()

int dwarf_formaddr(
Dwarf_Attribute attr,
Dwarf_Addr * return_addr,
Dwarf_Error *error)

When it succeeds, dwarf_formaddr() returns DW_DLV_OK and sets

Rev 3.17 7 November 2020 - 76 -

- 77 -

*return_addr to the address represented by the descriptor attr if the form of the
attribute belongs to the ADDRESS class. It is an error for the form to not belong to this
class. It returns DW_DLV_ERROR on error.

One possible error that can arise (in a .dwo object file or a .dwp package file) is
DW_DLE_MISSING_NEEDED_DEBUG_ADDR_SECTION. Such an error means that
the .dwo or .dwp file is missing the .debug_addr section. When opening a .dwo
object file or a .dwp package file one should also open the corresponding executable and
use dwarf_set_tied_dbg() to associate the objects before calling
dwarf_formaddr().

H 3 "dwarf_get_debug_addr_index()"

int dwarf_get_debug_addr_index(
Dwarf_Attribute attr,
Dwarf_Unsigned * return_index,
Dwarf_Error *error)

dwarf_get_debug_addr_index() is only valid on attributes with form
DW_FORM_GNU_addr_index or DW_FORM_addrx.

The function makes it possible to print the index from a dwarf dumper program.

When it succeeds, dwarf_get_debug_addr_index() returns DW_DLV_OK and
sets *return_index to the attribute’s index (into the .debug_addr section).

It returns DW_DLV_ERROR on error.

6.8.9 dwarf_get_debug_str_index()

int dwarf_get_debug_str_index(
Dwarf_Attribute attr,
Dwarf_Unsigned * return_index,
Dwarf_Error * error);

For an attribute with form DW_FORM_strx or DW_FORM_GNU_str_index this
function retrieves the index (which refers to a .debug_str_offsets section in this .dwo).

If successful, the function dwarf_get_debug_str_index() returns DW_DLV_OK
and returns the index through the return_index() pointer.

If the passed in attribute does not have this form or there is no valid compilation unit
context for the attribute the function returns DW_DLV_ERROR.

Rev 3.17 7 November 2020 - 77 -

- 78 -

DW_DLV_NO_ENTRY is not returned.

6.8.10 dwarf_formflag()

int dwarf_formflag(
Dwarf_Attribute attr,
Dwarf_Bool * return_bool,
Dwarf_Error *error)

When it succeeds, dwarf_formflag() returns DW_DLV_OK and sets
*return_bool to the (one unsigned byte) flag value. Any non-zero value means true.
A zero value means false.

Before 29 November 2012 this would only return 1 or zero through the pointer, but that
was always a strange thing to do. The DWARF specification has always been clear that
any non-zero value means true. The function should report the value found truthfully,
and now it does.

It returns DW_DLV_ERROR on error or if the attr does not have form flag.

6.8.11 dwarf_formudata()

int dwarf_formudata(
Dwarf_Attribute attr,
Dwarf_Unsigned * return_uvalue,
Dwarf_Error * error)

The function dwarf_formudata() returns DW_DLV_OK and sets
*return_uvalue to the Dwarf_Unsigned value of the attribute represented by the
descriptor attr if the form of the attribute belongs to the CONSTANT class. It is an
error for the form to not belong to this class. It returns DW_DLV_ERROR on error.

Never returns DW_DLV_NO_ENTRY.

For DWARF2 and DWARF3, DW_FORM_data4 and DW_FORM_data8 are possibly
class CONSTANT, and for DWARF4 and later they are definitely class CONSTANT.

6.8.12 dwarf_formsdata()

int dwarf_formsdata(
Dwarf_Attribute attr,
Dwarf_Signed * return_svalue,
Dwarf_Error *error)

The function dwarf_formsdata() returns DW_DLV_OK and sets
*return_svalue to the Dwarf_Signed value of the attribute represented by the
descriptor attr if the form of the attribute belongs to the CONSTANT class. It is an

Rev 3.17 7 November 2020 - 78 -

- 79 -

error for the form to not belong to this class. If the size of the data attribute referenced is
smaller than the size of the Dwarf_Signed type, its value is sign extended. It returns
DW_DLV_ERROR on error.

Never returns DW_DLV_NO_ENTRY.

For DWARF2 and DWARF3, DW_FORM_data4 and DW_FORM_data8 are possibly
class CONSTANT, and for DWARF4 and later they are definitely class CONSTANT.

6.8.13 dwarf_formblock()

int dwarf_formblock(
Dwarf_Attribute attr,
Dwarf_Block ** return_block,
Dwarf_Error * error)

The function dwarf_formblock() returns DW_DLV_OK and sets *return_block
to a pointer to a Dwarf_Block structure containing the value of the attribute
represented by the descriptor attr if the form of the attribute belongs to the BLOCK
class. It is an error for the form to not belong to this class. The storage pointed to by a
successful return of dwarf_formblock() should be freed using the allocation type
DW_DLA_BLOCK, when no longer of interest (see dwarf_dealloc()). It returns
DW_DLV_ERROR on error.

6.8.14 dwarf_formstring()

int dwarf_formstring(
Dwarf_Attribute attr,
char ** return_string,
Dwarf_Error *error)

The function dwarf_formstring() returns DW_DLV_OK and sets
*return_string to a pointer to a null-terminated string containing the value of the
attribute represented by the descriptor attr if the form of the attribute belongs to the
STRING class. It is an error for the form to not belong to this class.

The storage pointed to by a successful return of dwarf_formstring() should not be
freed. The pointer points into existing DWARF memory and the pointer becomes
stale/invalid after a call to dwarf_finish. dwarf_formstring() returns
DW_DLV_ERROR on error.

6.8.15 dwarf_formsig8()

Rev 3.17 7 November 2020 - 79 -

- 80 -

int dwarf_formsig8(
Dwarf_Attribute attr,
Dwarf_Sig8 * return_sig8,
Dwarf_Error * error)

The function dwarf_formsig8() returns DW_DLV_OK and copies the 8 byte
signature to a Dwarf_Sig8 structure provided by the caller if the form of the attribute is
of form DW_FORM_ref_sig8 (a member of the REFERENCE class). It is an error for
the form to be anything but DW_FORM_ref_sig8. It returns DW_DLV_ERROR on
error.

This form is used to refer to a type unit.

6.8.16 dwarf_formexprloc()

int dwarf_formexprloc(
Dwarf_Attribute attr,
Dwarf_Unsigned * return_exprlen,
Dwarf_Ptr * block_ptr,
Dwarf_Error * error)

The function dwarf_formexprloc() returns DW_DLV_OK and sets the two values
thru the pointers to the length and bytes of the DW_FORM_exprloc entry if the form of
the attribute is of form DW_FORM_experloc. It is an error for the form to be anything
but DW_FORM_exprloc. It returns DW_DLV_ERROR on error.

On success the value set through the return_exprlen pointer is the length of the
location expression. On success the value set through the block_ptr pointer is a
pointer to the bytes of the location expression itself.

6.8.17 dwarf_get_form_class()

enum Dwarf_Form_Class dwarf_get_form_class(
Dwarf_Half dwversion,
Dwarf_Half attrnum,
Dwarf_Half offset_size,
Dwarf_Half form)

The function is just for the convenience of libdwarf clients that might wish to categorize
the FORM of a particular attribute. The DWARF specification divides FORMs into
classes in Chapter 7 and this function figures out the correct class for a form.

The dwversion passed in shall be the dwarf version of the compilation unit involved (2
for DWARF2, 3 for DWARF3, 4 for DWARF 4). The attrnum passed in shall be the
attribute number of the attribute involved (for example, DW_AT_name). The
offset_size passed in shall be the length of an offset in the current compilation unit
(4 for 32bit dwarf or 8 for 64bit dwarf). The form passed in shall be the attribute form
number. If form DW_FORM_indirect is passed in DW_FORM_CLASS_UNKNOWN
will be returned as this form has no defined ’class’.

Rev 3.17 7 November 2020 - 80 -

- 81 -

When it returns DW_FORM_CLASS_UNKNOWN the function is simply saying it could not
determine the correct class given the arguments presented. Some user-defined attributes
might have this problem.

The function dwarf_get_version_of_die() may be helpful in filling out
arguments for a call to dwarf_get_form_class().

6.8.18 dwarf_discr_list()

int dwarf_discr_list(
Dwarf_Debug dbg,
Dwarf_Small * blockpointer,
Dwarf_Unsigned blocklen,
Dwarf_Dsc_Head * dsc_head_out,
Dwarf_Unsigned * dsc_array_length_out,
Dwarf_Error * error)
Dwarf_Error *error)

When it succeeds, dwarf_discr_list() returns DW_DLV_OK and sets
*dsc_head_out to a pointer to the discriminant information for the discriminant list
and sets *dsc_array_length_out to the count of discriminant entries. The only
current applicability is the block value of a DW_AT_discr_list attribute.

Those values are useful for calls to dwarf_discr_entry_u() or
dwarf_discr_entry_s() to get the actual discriminant values. See the example
below. It returns DW_DLV_NO_ENTRY if the block is empty. It returns
DW_DLV_ERROR if an error occurred.

When the call was successful and the Dwarf_Dsc_Head is no longer needed, call
dwarf_dealloc() to free all the space related to this.

Rev 3.17 7 November 2020 - 81 -

- 82 -

void example_discr_list(Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Attribute attr,
Dwarf_Half attrnum,
Dwarf_Bool isunsigned,
Dwarf_Half theform,
Dwarf_Error *err)

{
/* The example here assumes that

attribute attr is a DW_AT_discr_list.
isunsigned should be set from the signedness
of the parent of ’die’ per DWARF rules for
DW_AT_discr_list. */

enum Dwarf_Form_Class fc = DW_FORM_CLASS_UNKNOWN;
Dwarf_Half version = 0;
Dwarf_Half offset_size = 0;
int wres = 0;

wres = dwarf_get_version_of_die(die,&version,&offset_size);
if (wres != DW_DLV_OK) {

/* FAIL */
return;

}
fc = dwarf_get_form_class(version,attrnum,offset_size,theform);
if (fc == DW_FORM_CLASS_BLOCK) {

int fres = 0;
Dwarf_Block *tempb = 0;
fres = dwarf_formblock(attr, &tempb, err);
if (fres == DW_DLV_OK) {

Dwarf_Dsc_Head h = 0;
Dwarf_Unsigned u = 0;
Dwarf_Unsigned arraycount = 0;
int sres = 0;

sres = dwarf_discr_list(dbg,
(Dwarf_Small *)tempb->bl_data,
tempb->bl_len,
&h,&arraycount,err);

if (sres == DW_DLV_NO_ENTRY) {
/* Nothing here. */
dwarf_dealloc(dbg, tempb, DW_DLA_BLOCK);
return;

}
if (sres == DW_DLV_ERROR) {

/* FAIL . */
dwarf_dealloc(dbg, tempb, DW_DLA_BLOCK);

Rev 3.17 7 November 2020 - 82 -

- 83 -

return;
}
for(u = 0; u < arraycount; u++) {

int u2res = 0;
Dwarf_Half dtype = 0;
Dwarf_Signed dlow = 0;
Dwarf_Signed dhigh = 0;
Dwarf_Unsigned ulow = 0;
Dwarf_Unsigned uhigh = 0;

if (isunsigned) {
u2res = dwarf_discr_entry_u(h,u,

&dtype,&ulow,&uhigh,err);
} else {

u2res = dwarf_discr_entry_s(h,u,
&dtype,&dlow,&dhigh,err);

}
if(u2res == DW_DLV_ERROR) {

/* Something wrong */
dwarf_dealloc(dbg,h,DW_DLA_DSC_HEAD);
dwarf_dealloc(dbg, tempb, DW_DLA_BLOCK);
return;

}
if(u2res == DW_DLV_NO_ENTRY) {

/* Impossible. u < arraycount. */
dwarf_dealloc(dbg,h,DW_DLA_DSC_HEAD);
dwarf_dealloc(dbg, tempb, DW_DLA_BLOCK);
return;

}
/* Do something with dtype, and whichever

of ulow, uhigh,dlow,dhigh got set.
Probably save the values somewhere.
Simple casting of dlow to ulow (or vice versa)
will not get the right value due to the nature
of LEB values. Similarly for uhigh, dhigh.
One must use the right call.

*/
}
dwarf_dealloc(dbg,h,DW_DLA_DSC_HEAD);
dwarf_dealloc(dbg, tempb, DW_DLA_BLOCK);

}
}

}

Rev 3.17 7 November 2020 - 83 -

- 84 -

6.8.19 dwarf_discr_entry_u()

int dwarf_discr_entry_u(
Dwarf_Dsc_Head dsc_head,
Dwarf_Unsigned dsc_array_index,
Dwarf_Half *dsc_type,
Dwarf_Unsigned *dsc_low,
Dwarf_Unsigned *dsc_high,
Dwarf_Error *error)

When it succeeds, dwarf_discr_entry_u() returns DW_DLV_OK and sets
*dsc_type, *dsc_low, and *dsc_high to the discriminant values for that index.
Valid dsc_array_index values are zero to (dsc_array_length_out -1)
from a dwarf_discr_list() call.

If *dsc_type is DW_DSC_label *dsc_low is set to the discriminant value and
*dsc_high is set to zero.

If *dsc_type is DW_DSC_range *dsc_low is set to the low end of the discriminant
range and and *dsc_high is set to the high end of the discriminant range.

Due to the nature of the LEB numbers in the discriminant representation in DWARF one
must call the correct one of dwarf_discr_entry_u() or
dwarf_discr_entry_s() based on whether the discriminant is signed or unsigned.
Casting an unsigned to signed is not always going to get the right value.

If dsc_array_index is outside the range of valid indexes the function returns
DW_DLV_NO_ENTRY. On error it returns DW_DLV_ERROR and sets *error to an
error pointer.

6.8.20 dwarf_discr_entry_s()

int dwarf_discr_entry_s(
Dwarf_Dsc_Head dsc_head,
Dwarf_Unsigned dsc_array_index,
Dwarf_Half *dsc_type,
Dwarf_Signed *dsc_low,
Dwarf_Signed *dsc_high,
Dwarf_Error *error)

This is identical to dwarf_discr_entry_u() except that the discriminant values are
signed values in this interface. Callers must check the discriminant type and call the
correct function.

6.9 Location List Operations, Raw .debug_loclists

This set of interfaces is to read the (entire) .debug_loclists section without
reference to any DIE. As such these can only present the raw data from the file. There is

Rev 3.17 7 November 2020 - 84 -

- 85 -

no way in these interfaces to get actual addresses. These might be of interest if you want
to know exactly what the compiler output in the .debug_loclists section.
"dwarfdump ----print-raw-loclists" (try adding -v or -vvv) makes these calls.

Here is an example using all the following calls.

Figure 17. Example Raw Loclist

Rev 3.17 7 November 2020 - 85 -

- 86 -

int example_raw_loclist(Dwarf_Debug dbg,Dwarf_Error *error)
{

Dwarf_Unsigned count = 0;
int res = 0;
Dwarf_Unsigned i = 0;

res = dwarf_load_loclists(dbg,&count,error);
if (res != DW_DLV_OK) {

return res;
}
for(i =0 ; i < count ; ++i) {

Dwarf_Unsigned header_offset = 0;
Dwarf_Small offset_size = 0;
Dwarf_Small extension_size = 0;
unsigned version = 0; /* 5 */
Dwarf_Small address_size = 0;
Dwarf_Small segment_selector_size = 0;
Dwarf_Unsigned offset_entry_count = 0;
Dwarf_Unsigned offset_of_offset_array = 0;
Dwarf_Unsigned offset_of_first_locentry = 0;
Dwarf_Unsigned offset_past_last_loceentry = 0;

res = dwarf_get_loclist_context_basics(dbg,i,
&header_offset,&offset_size,&extension_size,
&version,&address_size,&segment_selector_size,
&offset_entry_count,&offset_of_offset_array,
&offset_of_first_locentry,
&offset_past_last_locentry,error);

if (res != DW_DLV_OK) {
return res;

}
{

Dwarf_Unsigned e = 0;
unsigned colmax = 4;
unsigned col = 0;
Dwarf_Unsigned global_offset_of_value = 0;

for (; e < offset_entry_count; ++e) {
Dwarf_Unsigned value = 0;
int resc = 0;

resc = dwarf_get_loclist_offset_index_value(dbg,
i,e,&value,
&global_offset_of_value,error);

if (resc != DW_DLV_OK) {
return resc;

Rev 3.17 7 November 2020 - 86 -

- 87 -

}
/* Do something */
col++;
if (col == colmax) {

col = 0;
}

}

}
{

Dwarf_Unsigned curoffset = offset_of_first_loceentry;
Dwarf_Unsigned endoffset = offset_past_last_loceentry;
int rese = 0;
Dwarf_Unsigned ct = 0;

for (; curoffset < endoffset; ++ct) {
unsigned entrylen = 0;
unsigned code = 0;
Dwarf_Unsigned v1 = 0;
Dwarf_Unsigned v2 = 0;
rese = dwarf_get_loclist_lle(dbg,i,

curoffset,endoffset,
&entrylen,
&code,&v1,&v2,error);

if (rese != DW_DLV_OK) {
return rese;

}
curoffset += entrylen;
if (curoffset > endoffset) {

return DW_DLV_ERROR;
}

}
}

}
return DW_DLV_OK;

}

6.9.1 dwarf_load_loclists()

int dwarf_load_loclists(
Dwarf_Debug dbg,
Dwarf_Unsigned *loclists_count,
Dwarf_Error *error)

On a successful call to dwarf_load_loclists() the function returns DW_DLV_OK,

Rev 3.17 7 November 2020 - 87 -

- 88 -

sets *loclists_count (if and only if loclists_count is non-null) to the number
of distinct section contents that exist. A small amount of data for each Location List
Table (DWARF5 section 7.29) is recorded in dbg as a side effect. Normally libdwarf
will have already called this, but if an application never requests any .debug_info
data the section might not be loaded. If the section is loaded this returns very quickly and
will set *loclists_count just as described in this paragraph.

If there is no .debug_loclists section in the object file this function returns
DW_DLV_NO_ENTRY.

If something is malformed it returns DW_DLV_ERROR and sets *error to the
applicable error pointer describgin the problem.

There is no dealloc call. Calling dwarf_finish() releases the modest amount of
memory recorded for this section as a side effect.

6.9.2 dwarf_get_loclist_context_basics()

int dwarf_get_loclist_context_basics(Dwarf_Debug dbg,
Dwarf_Unsigned context_index,
Dwarf_Unsigned * header_offset,
Dwarf_Small * offset_size,
Dwarf_Small * extension_size,
unsigned * version, /* 5 */
Dwarf_Small * address_size,
Dwarf_Small * segment_selector_size,
Dwarf_Unsigned * offset_entry_count,
Dwarf_Unsigned * offset_of_offset_array,
Dwarf_Unsigned * offset_of_first_locentry,
Dwarf_Unsigned * offset_past_last_locentry,
Dwarf_Error * /*err*/);

On success this returns DW_DLV_OK and returns values through the pointer arguments
(other than dbg or error)

A call to dwarf_load_loclists() that suceeds gets you the count of contexts and
dwarf_get_loclist_context_basics() for any "i >=0 and i < count" gets you
the context values relevant to .debug_loclists.

Any of the pointer-arguments for returning context values can be passed in as 0 (in which
case they will be skipped).

You will want *offset_entry_count so you can call
dwarf_get_loclist_offset_index_value() usefully.

If the context_index passed in is out of range the function returns
DW_DLV_NO_ENTRY

At the present time DW_DLV_ERROR is never returned.

Rev 3.17 7 November 2020 - 88 -

- 89 -

6.9.3 dwarf_get_loclist_offset_index_value()

int dwarf_get_loclist_offset_index_value(Dwarf_Debug dbg,
Dwarf_Unsigned context_index,
Dwarf_Unsigned offsetentry_index,
Dwarf_Unsigned * offset_value_out,
Dwarf_Unsigned * global_offset_value_out,
Dwarf_Error *error)

On success dwarf_get_loclist_offset_index_value() returns
DW_DLV_OK, sets * offset_value_out to the value in the Range List Table offset
array, and sets * global_offset_value_out to the section offset (in
.debug_addr) of the offset value.

Pass in context_index exactly as the same field passed to
dwarf_get_loclist_context_basics().

Pass in offset_entry_index based on the return field offset_entry_count
from dwarf_get_loclist_context_basics(), meaning for that
context_index an offset_entry_index >=0 and < offset_entry_count.

Pass in offset_entry_count exactly as the same field passed to
dwarf_get_loclist_context_basics().

If one of the indexes passed in is out of range DW_DLV_NO_ENTRY will be returned and
no return arguments touched.

If there is some corruption of DWARF5 data then DW_DLV_ERROR might be returned
and *error set to the error details.

6.9.4 dwarf_get_loclist_lle()

int dwarf_get_loclist_lle(
Dwarf_Debug dbg,
Dwarf_Unsigned contextnumber,
Dwarf_Unsigned entry_offset,
Dwarf_Unsigned endoffset,
unsigned *entrylen,
unsigned *entry_kind,
Dwarf_Unsigned *entry_operand1,
Dwarf_Unsigned *entry_operand2,
Dwarf_Unsigned *expr_ops_blocksize,
Dwarf_Unsigned *expr_ops_offset,
Dwarf_Small **expr_opsdata,
Dwarf_Error *error)

On success it returns a single DW_RLE* record (see dwarf.h) fields.

Rev 3.17 7 November 2020 - 89 -

- 90 -

contextnumber is the number of the current loclist context.

entry_offset is the section offset (section-global offset) of the next record.

endoffset is one past the last entry in this rle context.

*entrylen returns the length in the .debug_loclists section of the particular record
returned. It’s used to increment to the next record within this loclist context.

entrykind returns is the DW_RLE number.

Some record kinds have 1 or 0 operands, most have two operands (the records describing
ranges).

*expr_ops_blocksize returns the size, in bytes, of the Dwarf Expression (some
operations have no Dwarf Expression and those that do can have a zero length blocksize.

*expr_ops_offset returns the offset (in the .debug_loclists section) of the first byte
of the Dwarf Expression.

*expr_opsdata returns a pointer to the bytes of the Dwarf Expression.

If the contextnumber is out of range it will return DW_DLV_NO_ENTRY.

If the .debug_loclists section is malformed or the entry_offset is incorrect it
may return DW_DLV_ERROR.

6.10 Location List operations .debug_loc & .debug_loclists

These operations apply to the .debug_loc section in DWARF2, DWARF3, DWARF4, and
DWARF5 object files. Earlier versions still work as well as ever, but they only deal with,
at most, DWARF2, DWARF3, and DWARF4.

6.10.1 dwarf_get_loclist_c()

int dwarf_get_loclist_c (Dwarf_Attribute attr,
Dwarf_Loc_Head_c * loclist_head,
Dwarf_Unsigned * locCount,
Dwarf_Error * error);

This function returns a pointer that is, in turn, used to make possible calls to return the
details of the location list.

The incoming argument attr should have one of the FORMs of a location expression or
location list.

On success this returns DW_DLV_OK and sets *loclist_head to a pointer used in
further calls (see the example and descriptions that follow it). locCount is set to the
number of entries in the location list (or if the FORM is of a location expression the
locCount will be set to one). At this point one cannot yet tell if it was a location list or
a location expression (see . dwarf_get_locdesc_entry_c{}).

Rev 3.17 7 November 2020 - 90 -

- 91 -

In case of error DW_DLV_ERROR is returned and *error is set to an error designation.

A return of DW_DLV_NO_ENTRY may be possible but is a bit odd.

Rev 3.17 7 November 2020 - 91 -

- 92 -

void example_loclistcv5(Dwarf_Debug dbg,Dwarf_Attribute someattr)
{

Dwarf_Unsigned lcount = 0;
Dwarf_Loc_Head_c loclist_head = 0;
Dwarf_Error error = 0;
int lres = 0;

lres = dwarf_get_loclist_c(someattr,&loclist_head,&lcount,&error);
if (lres == DW_DLV_OK) {

Dwarf_Unsigned i = 0;

/* Before any return remember to call
dwarf_loc_head_c_dealloc(loclist_head); */

for (i = 0; i < lcount; ++i) {
Dwarf_Small loclist_lkind = 0;
Dwarf_Small lle_value = 0;
Dwarf_Unsigned rawval1 = 0;
Dwarf_Unsigned rawval2 = 0;
Dwarf_Bool debug_addr_unavailable = FALSE;
Dwarf_Addr lopc = 0;
Dwarf_Addr hipc = 0;
Dwarf_Unsigned loclist_expr_op_count = 0;
Dwarf_Locdesc_c locdesc_entry = 0;
Dwarf_Unsigned expression_offset = 0;
Dwarf_Unsigned locdesc_offset = 0;

lres = dwarf_get_locdesc_entry_d(loclist_head,
i,
&lle_value,
&rawval1,&rawval2,
&debug_addr_unavailable,
&lopc,&hipc,
&loclist_expr_op_count,
&locdesc_entry,
&loclist_lkind,
&expression_offset,
&locdesc_offset,
&error);

if (lres == DW_DLV_OK) {
Dwarf_Unsigned j = 0;
int opres = 0;
Dwarf_Small op = 0;

for (j = 0; j < loclist_expr_op_count; ++j) {
Dwarf_Unsigned raw1 = 0;
Dwarf_Unsigned raw2 = 0;

Rev 3.17 7 November 2020 - 92 -

- 93 -

Dwarf_Unsigned raw3 = 0;
Dwarf_Unsigned opd1 = 0;
Dwarf_Unsigned opd2 = 0;
Dwarf_Unsigned opd3 = 0;
Dwarf_Unsigned offsetforbranch = 0;

opres = dwarf_get_location_op_value_d(
locdesc_entry,
j,&op,
&raw1,&raw2,&raw3,
&opd1, &opd2,&opd3,&offsetforbranch,
&error);

if (opres == DW_DLV_OK) {
/* Do something with the operators.

Usually you want to use opd1,2,3
as appropriate. Calculations
involving base addresses etc
have already been incorporated
in opd1,2,3. */

} else {
dwarf_dealloc_error(dbg,error);
dwarf_loc_head_c_dealloc(loclist_head);
/*Something is wrong. */
return;

}
}

} else {
/* Something is wrong. Do something. */
dwarf_loc_head_c_dealloc(loclist_head);
dwarf_dealloc_error(dbg,error);
return;

}
}

}
/* Always call dwarf_loc_head_c_dealloc()

to free all the memory associated with loclist_head. */
if (error) {

dwarf_dealloc_error(dbg,error);
}
dwarf_loc_head_c_dealloc(loclist_head);
loclist_head = 0;
return;

}

Rev 3.17 7 November 2020 - 93 -

- 94 -

6.10.2 dwarf_get_locdesc_entry_d()

Earlier versions of this work with earlier versions of DWARF. This works with all
DWARF from DWARF2 on.

int dwarf_get_locdesc_entry_d(Dwarf_Loc_Head_c /*loclist_head*/,
Dwarf_Unsigned index,
Dwarf_Small *lle_value_out,
Dwarf_Addr *rawval1_out,
Dwarf_Addr *rawval2_out,
Dwarf_Bool *debug_addr_unavailable,
Dwarf_Addr *lopc_out,
Dwarf_Addr *hipc_out,
Dwarf_Unsigned *loc_expr_op_count_out,
Dwarf_Locdesc_c *locentry_out,
Dwarf_Small *loclist_kind,
Dwarf_Unsigned *expression_offset_out,
Dwarf_Unsigned *locdesc_offset_out,
Dwarf_Error *error);

This function returns overall information about a location list or location description.
Details about location operators are retrieved by a call to
dwarf_get_location_op_value_d() (described below). In case of success
DW_DLV_OK is returned and arguments are set through the pointers to return values to
the caller. Now we describe each argument.

*loclist_kind returns DW_LKIND_expression, DW_LKIND_loclist,
DW_LKIND_GNU_exp_list, or DW_LKIND_loclists.

DW_LKIND_expression means the ’list’ is really just a location expression. The only
entry is with index zero. In this case *lle_value_out will have the value
DW_LLE_start_end.

DW_LKIND_loclist, means the list is from DWARF2, DWARF3, or DWARF4. The
*lle_value_out value has been synthesized as if it were a DWARF5 expression.

DW_LKIND_GNU_exp_list, means the list is from a DWARF4 .debug_loc.dwo object
section. It is an experimental version from before DWARF5 was published. The
*lle_value_out is DW_LLEX_start_end_entry (or one of the other
DW_LLEX values).

DW_LKIND_loclists means this is a DWARF5 loclist, so DW_LLE_start_end is
an example of one possible *lle_value_out values. In addition, if
*debug_addr_unavailable is set it means the *lopc_out and *hipc_out
could not be correctly set (so are meaningless) because the .debug_addr section is
missing. Very likely the .debug_addr section is in the executable and that file needs to be
opened and attached to the current Dwarf_Debug with dwarf_set_tied_dbg().

Rev 3.17 7 November 2020 - 94 -

- 95 -

*rawval1_out returns the value of the first operand in the location list entry.
Uninterpreted. Useful for reporting or for those wishing to do their own calculation of
lopc.

*rawval2_out returns the value of the second operand in the location list entry.
Uninterpreted. Useful for reporting or for those wishing to do their own calculation of
hipc.

The argument loc_expr_op_count_out returns the number of operators in the
location expression involved (which may be zero).

The argument locentry_out returns an identifier used in calls to
dwarf_get_location_op_value_d().

The argument expression_offset_out returns the offset (in the .debug_loc(.dso)
or .debug_info(.dwo) of the location expression itself (possibly useful for debugging).

The argument locdesc_offset_out returns the offset (in the section involved (see
loclist_kind) of the location list entry itself (possibly useful for debugging).

In case of error DW_DLV_ERROR is returned and *error is set to an error designation.

A return of DW_DLV_NO_ENTRY may be possible but is a bit odd.

6.10.3 dwarf_get_locdesc_entry_c()

This is the same as dwarf_get_locdesc_entry_d() except that the
debug_addr_unavailable field is missing. Earlier versions (starting with
dwarf_get_locdesc_entry() exist and work as well as they ever did, but we
suggest you stop using those earlier versions. We suggest you switch to using
dwarf_get_locdesc_entry_d()

int dwarf_get_locdesc_entry_c(Dwarf_Loc_Head_c /*loclist_head*/,
Dwarf_Unsigned index,
Dwarf_Small *lle_value_out,
Dwarf_Addr *rawval1_out,
Dwarf_Addr *rawval2_out,
Dwarf_Addr *lopc_out,
Dwarf_Addr *hipc_out,
Dwarf_Unsigned *loc_expr_op_count_out,
Dwarf_Locdesc_c *locentry_out,
Dwarf_Small *loclist_kind,
Dwarf_Unsigned *expression_offset_out,
Dwarf_Unsigned *locdesc_offset_out,
Dwarf_Error *error);

Rev 3.17 7 November 2020 - 95 -

- 96 -

6.10.4 dwarf_get_loclist_head_kind()

int dwarf_get_loclist_head_kind(
Dwarf_Loclists_Head head,
unsigned int * kind,
Dwarf_Error *error)

Though one should test the return code, at present this always returns DW_DLV_OK, and
sets *kind to the DW_LKIND* value for this head.

At the present time neither DW_DLV_ERROR nor DW_DLV_NO_ENTRY is returned.

6.10.5 dwarf_get_location_op_value_d()

int dwarf_get_location_op_value_d(Dwarf_Locdesc_c locdesc,
Dwarf_Unsigned index,
Dwarf_Small * atom_out,
Dwarf_Unsigned * operand1,
Dwarf_Unsigned * operand2,
Dwarf_Unsigned * operand3,
Dwarf_Unsigned * rawop1,
Dwarf_Unsigned * rawop2,
Dwarf_Unsigned * rawop3,
Dwarf_Unsigned * offset_for_branch,
Dwarf_Error* error);

On success The function dwarf_get_location_op_value_d() returns the
information for the single operator number index from the location expression
locdesc. It sets the following values.

atom_out is set to the applicable operator code, for example DW_OP_reg5.

operand1, operand2, and operand3 are set to the operator operands as applicable
(see DWARF documents on the operands for each operator). All additions of base fields,
if any, hav e been done already. operand3 is new as of DWARF5.

In some cases operand3 is actually a pointer into section data in memory and operand2
has the length of the data at operand3. Callers must extract the bytes and deal with
endianness issues of the extracted value.

rawop1, rawop2, and rawop3 are set to the operator operands as applicable (see
DWARF documents on the operands for each operator) before any base values were
added in.. As for the previous, sometimes dealing with rawop3 means interpreting it as
a pointer and doing a dereference.

More on the pointer values in Dwarf_Unsigned: When a DWARF operand is not of a size
fixed by dwarf or whose type is unknown, or is possibly too large for a dwarf stack entry,
libdwarf will insert a pointer (to memory in the dwarf data somewhere) as the operand
value. DW_OP_implicit_value operand 2, DW_OP_[GNU_]entry_value

Rev 3.17 7 November 2020 - 96 -

- 97 -

operand 2, and DW_OP_[GNU_]const_type operand 3 are instances of this.
The problem with the values is that libdwarf is unclear what the type of the value is so we
pass the problem to you, the callers!

offset_for_branch is set to the offset (in bytes) in this expression of this operator.
The value makes it possible for callers to implement the operator branch operators.

In case of an error, the function returns DW_DLV_ERROR and sets *error to an error
value.

DW_DLV_NO_ENTRY is probably not a possible return value, but please test for it
anyway.

6.10.6 dwarf_loclist_from_expr_c()

This is now obsolete, though it works as well as ever, so if it works for your object codes
you may continue to use it.

int dwarf_loclist_from_expr_c(Dwarf_Debug dbg,
Dwarf_Ptr expression_in,
Dwarf_Unsigned expression_length,
Dwarf_Half address_size,
Dwarf_Half offset_size,
Dwarf_Small dwarf_version,
Dwarf_Loc_Head_c* loc_head,
Dwarf_Unsigned * listlen,
Dwarf_Error * error);

This interface is not sufficient to work properly as it fails to pass in data from the
Compilation Unit. The earlier versions dwarf_loclist_from_expr(),
dwarf_loclist_from_expr_a(), and dwarf_loclist_from_expr_b are
all similarly deficient. These suffice for early DWARF locations but cannot work for
ev ery kind of DWARF5 location list or location.

Frame operators such as DW_CFA_def_cfa_expression have a location expression and
the location_expression is accessed with this function.

On success it returns DW_DLV_OK and sets the two return arguments (explained a few
lines later here).

The expression_in argument must contain a valid pointer to location expression
bytes. The expression_length argument must contain the length of that location
expression in bytes.

The address_size argument must contain the size of an address on the target
machine for this expression (normally 4 or 8). The offset_size argument must
contain the size of an offset in the expression (normally 4, sometimes 8). The version
argument must contain the dwarf_version of the expression (2,3,4, or 5).

The returned value *loc_head is used to actually access the location expression details
(see the example following).

Rev 3.17 7 November 2020 - 97 -

- 98 -

The returned value *listlen is the number of location expressions (ie 1) in the
location list (for uniformity of access we make it look like a single-entry location list).

On error the function returns DW_DLV_ERROR and sets *error to reflect the error.

A return of DW_DLV_NO_ENTRY is probably impossible, but callers should assume it is
possible. No return arguments are set in this case.

Rev 3.17 7 November 2020 - 98 -

- 99 -

void
example_locexprc(Dwarf_Debug dbg,Dwarf_Ptr expr_bytes,

Dwarf_Unsigned expr_len,
Dwarf_Half addr_size,
Dwarf_Half offset_size,
Dwarf_Half version)

{
Dwarf_Loc_Head_c head = 0;
Dwarf_Locdesc_c locentry = 0;
int res2 = 0;
Dwarf_Unsigned lopc = 0;
Dwarf_Unsigned hipc = 0;
Dwarf_Unsigned ulistlen = 0;
Dwarf_Unsigned ulocentry_count = 0;
Dwarf_Unsigned section_offset = 0;
Dwarf_Unsigned locdesc_offset = 0;
Dwarf_Small lle_value = 0;
Dwarf_Small loclist_source = 0;
Dwarf_Unsigned i = 0;
Dwarf_Error error = 0;

res2 = dwarf_loclist_from_expr_c(dbg,
expr_bytes,expr_len,
addr_size,
offset_size,
version,
&head,
&ulistlen,
&error);

if(res2 == DW_DLV_NO_ENTRY) {
return;

}
if(res2 == DW_DLV_ERROR) {

return;
}
/* These are a location expression, not loclist.

So we just need the 0th entry. */
res2 = dwarf_get_locdesc_entry_c(head,

0, /* Data from 0th LocDesc */
&lle_value,
&lopc, &hipc,
&ulocentry_count,
&locentry,
&loclist_source,
§ion_offset,
&locdesc_offset,

Rev 3.17 7 November 2020 - 99 -

- 100 -

&error);
if (res2 == DW_DLV_ERROR) {

dwarf_loc_head_c_dealloc(head);
return;

} else if (res2 == DW_DLV_NO_ENTRY) {
dwarf_loc_head_c_dealloc(head);
return;

}
/* ASSERT: ulistlen == 1 */
for (i = 0; i < ulocentry_count;++i) {

Dwarf_Small op = 0;
Dwarf_Unsigned opd1 = 0;
Dwarf_Unsigned opd2 = 0;
Dwarf_Unsigned opd3 = 0;
Dwarf_Unsigned offsetforbranch = 0;

res2 = dwarf_get_location_op_value_c(locentry,
i, &op,&opd1,&opd2,&opd3,&offsetforbranch,
&error);

/* Do something with the expression operator and operands */
if (res2 != DW_DLV_OK) {

dwarf_loc_head_c_dealloc(head);
return;

}
}
dwarf_loc_head_c_dealloc(head);

}

6.10.7 dwarf_loc_head_c_dealloc()

void dwarf_loc_head_c_dealloc(Dwarf_Loc_Head_c loclist_head);

This function takes care of all the details so one does not have to _dwarf_dealloc() the
pieces individually, though code that continues to do the pieces individually still works.

This function frees all the memory associated with the loclist_head. There is no
return value. It’s good practice to set loclist_head. to zero immediately after the
call, as the pointer is stale at that point.

6.10.8 dwarf_loclist_n()

int dwarf_loclist_n(
Dwarf_Attribute attr,
Dwarf_Locdesc ***llbuf,
Dwarf_Signed *listlen,
Dwarf_Error *error)

Rev 3.17 7 November 2020 - 100 -

- 101 -

This interface cannot handle DWARF5 or Split Dwarf. Use
dwarf_get_loclist_c() and related functions instead (as of November 2015).
The function dwarf_loclist_n() sets *llbuf to point to an array of
Dwarf_Locdesc pointers corresponding to each of the location expressions in a
location list, and sets *listlen to the number of elements in the array and returns
DW_DLV_OK if the attribute is appropriate.

This is the preferred function for Dwarf_Locdesc as it is the interface allowing access to
an entire loclist. (use of dwarf_loclist_n() is suggested as the better interface,
though dwarf_loclist() is still supported.)

If the attribute is a reference to a location list (DW_FORM_data4 or DW_FORM_data8)
the location list entries are used to fill in all the fields of the Dwarf_Locdesc(s)
returned.

If the attribute is a location description (DW_FORM_block2 or DW_FORM_block4)
then some of the Dwarf_Locdesc values of the single Dwarf_Locdesc record are
set to ’sensible’ but arbitrary values. Specifically, ld_lopc is set to 0 and ld_hipc is set to
all-bits-on. And *listlen is set to 1.

If the attribute is a reference to a location expression (DW_FORM_locexper) then some
of the Dwarf_Locdesc values of the single Dwarf_Locdesc record are set to
’sensible’ but arbitrary values. Specifically, ld_lopc is set to 0 and ld_hipc is set to all-
bits-on. And *listlen is set to 1.

It returns DW_DLV_ERROR on error.

dwarf_loclist_n() works on DW_AT_location,
DW_AT_data_member_location, DW_AT_vtable_elem_location,
DW_AT_string_length, DW_AT_use_location, and DW_AT_return_addr
attributes.

If the attribute is DW_AT_data_member_location the value may be of class
CONSTANT. dwarf_loclist_n() is unable to read class CONSTANT, so you need
to first determine the class using dwarf_get_form_class() and if it is class
CONSTANT call dwarf_formsdata() or dwarf_formudata() to get the
constant value (you may need to call both as DWARF4 does not define the signedness of
the constant value).

Storage allocated by a successful call of dwarf_loclist_n() should be deallocated
when no longer of interest (see dwarf_dealloc()). The block of Dwarf_Loc
structs pointed to by the ld_s field of each Dwarf_Locdesc structure should be
deallocated with the allocation type DW_DLA_LOC_BLOCK. and the llbuf[] space
pointed to should be deallocated with allocation type DW_DLA_LOCDESC. This should
be followed by deallocation of the llbuf using the allocation type DW_DLA_LIST.

Rev 3.17 7 November 2020 - 101 -

- 102 -

void example9(Dwarf_Debug dbg,Dwarf_Attribute someattr)
{

Dwarf_Signed lcount = 0;
Dwarf_Locdesc **llbuf = 0;
Dwarf_Error error = 0;
int lres = 0;

lres = dwarf_loclist_n(someattr, &llbuf,&lcount,&error);
if (lres == DW_DLV_OK) {

Dwarf_Signed i = 0;
for (i = 0; i < lcount; ++i) {

/* Use llbuf[i]. Both Dwarf_Locdesc and the
array of Dwarf_Loc it points to are
defined in libdwarf.h: they are
not opaque structs. */

dwarf_dealloc(dbg, llbuf[i]->ld_s, DW_DLA_LOC_BLOCK);
dwarf_dealloc(dbg,llbuf[i], DW_DLA_LOCDESC);

}
dwarf_dealloc(dbg, llbuf, DW_DLA_LIST);

}
}

6.10.9 dwarf_loclist()

int dwarf_loclist(
Dwarf_Attribute attr,
Dwarf_Locdesc **llbuf,
Dwarf_Signed *listlen,
Dwarf_Error *error)

Use dwarf_get_loclist_c() and related functions instead (as of November
2015). The function dwarf_loclist() sets *llbuf to point to a
Dwarf_Locdesc pointer for the single location expression it can return. It sets
*listlen to 1. and returns DW_DLV_OK if the attribute is appropriate.

It is less flexible than dwarf_loclist_n() in that dwarf_loclist() can handle
a maximum of one location expression, not a full location list. If a location-list is present
it returns only the first location-list entry location description. Use
dwarf_loclist_n() instead.

It returns DW_DLV_ERROR on error. dwarf_loclist() works on
DW_AT_location, DW_AT_data_member_location,
DW_AT_vtable_elem_location, DW_AT_string_length,
DW_AT_use_location, and DW_AT_return_addr attributes.

Storage allocated by a successful call of dwarf_loclist() should be deallocated
when no longer of interest (see dwarf_dealloc()). The block of Dwarf_Loc
structs pointed to by the ld_s field of each Dwarf_Locdesc structure should be

Rev 3.17 7 November 2020 - 102 -

- 103 -

deallocated with the allocation type DW_DLA_LOC_BLOCK. This should be followed by
deallocation of the llbuf using the allocation type DW_DLA_LOCDESC.

Figure 18. Examplea dwarf_loclist()

void examplea(Dwarf_Debug dbg,Dwarf_Attribute someattr)
{

Dwarf_Signed lcount = 0;
Dwarf_Locdesc *llbuf = 0;
Dwarf_Error error = 0;
int lres = 0;

lres = dwarf_loclist(someattr, &llbuf,&lcount,&error);
if (lres == DW_DLV_OK) {

/* lcount is always 1, (and has always been 1) */
/* Use llbuf here. */

dwarf_dealloc(dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK);
dwarf_dealloc(dbg, llbuf, DW_DLA_LOCDESC);

}
}

6.10.10 dwarf_loclist_from_expr()

int dwarf_loclist_from_expr(
Dwarf_Debug dbg,
Dwarf_Ptr bytes_in,
Dwarf_Unsigned bytes_len,
Dwarf_Locdesc **llbuf,
Dwarf_Signed *listlen,
Dwarf_Error *error)

Use dwarf_loclist_from_expr_b() instead. This function is obsolete.

The function dwarf_loclist_from_expr() sets *llbuf to point to a
Dwarf_Locdesc pointer for the single location expression which is pointed to by
*bytes_in (whose length is *bytes_len). It sets *listlen to 1. and returns
DW_DLV_OK if decoding is successful. Some sources of bytes of expressions are dwarf
expressions in frame operations like DW_CFA_def_cfa_expression,
DW_CFA_expression, and DW_CFA_val_expression.

Any address_size data in the location expression is assumed to be the same size as the
default address_size for the object being read (normally 4 or 8).

It returns DW_DLV_ERROR on error.

Storage allocated by a successful call of dwarf_loclist_from_expr() should be
deallocated when no longer of interest (see dwarf_dealloc()). The block of
Dwarf_Loc structs pointed to by the ld_s field of each Dwarf_Locdesc structure

Rev 3.17 7 November 2020 - 103 -

- 104 -

should be deallocated with the allocation type DW_DLA_LOC_BLOCK. This should be
followed by deallocation of the llbuf using the allocation type DW_DLA_LOCDESC.

Figure 19. Exampleb dwarf_loclist_from_expr()

void exampleb(Dwarf_Debug dbg,Dwarf_Ptr data, Dwarf_Unsigned len)
{

Dwarf_Signed lcount = 0;
Dwarf_Locdesc *llbuf = 0;
Dwarf_Error error = 0;
int lres = 0;

lres = dwarf_loclist_from_expr(dbg,data,len, &llbuf,&lcount,
&error);

if (lres == DW_DLV_OK) {
/* lcount is always 1 */
/* Use llbuf here.*/

dwarf_dealloc(dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK);
dwarf_dealloc(dbg, llbuf, DW_DLA_LOCDESC);

}
}

6.10.11 dwarf_loclist_from_expr_b()

int dwarf_loclist_from_expr_a(
Dwarf_Ptr bytes_in,
Dwarf_Unsigned bytes_len,
Dwarf_Half addr_size,
Dwarf_Half offset_size,
Dwarf_Half version_stamp,
Dwarf_Locdesc **llbuf,
Dwarf_Signed *listlen,
Dwarf_Error *error)

This function is obsolete. The function dwarf_loclist_from_expr_b() is
identical to dwarf_loclist_from_expr_a() in every way except that the caller
passes an additional argument version_stamp containing the version stamp (2 for
DWARF2, etc) of the CU using this location expression and an additional argument of the
offset size of the CU using this location expression. The DW_OP_GNU_implicit_pointer
operation requires this version and offset information to be correctly processed.

The addr_size argument (from 27April2009) is needed to correctly interpret frame
information as different compilation units can have different address sizes. DWARF4
adds address_size to the CIE header.

6.10.12 dwarf_loclist_from_expr_a()

Rev 3.17 7 November 2020 - 104 -

- 105 -

int dwarf_loclist_from_expr_a(
Dwarf_Ptr bytes_in,
Dwarf_Unsigned bytes_len,
Dwarf_Half addr_size,
Dwarf_Locdesc **llbuf,
Dwarf_Signed *listlen,
Dwarf_Error *error)

This function is obsolete. Use dwarf_loclist_from_expr_b() instead. This
function is obsolete.

The function dwarf_loclist_from_expr_a() is identical to
dwarf_loclist_from_expr() in every way except that the caller passes the
additional argument addr_size containing the address size (normally 4 or 8) applying
this location expression.

The addr_size argument (added 27April2009) is needed to correctly interpret frame
information as different compilation units can have different address sizes. DWARF4
adds address_size to the CIE header.

6.11 Line Number Operations

These functions are concerned with accessing line number entries, mapping debugging
information entry objects to their corresponding source lines, and providing a mechanism
for obtaining information about line number entries. Although, the interface talks of
"lines" what is really meant is "statements". In case there is more than one statement on
the same line, there will be at least one descriptor per statement, all with the same line
number. If column number is also being represented they will have the column numbers
of the start of the statements also represented.

There can also be more than one Dwarf_Line per statement. For example, if a file is
preprocessed by a language translator, this could result in translator output showing 2 or
more sets of line numbers per translated line of output.

As of October 2015 there are two sets of overall access and release functions. The older
set of functions is dwarf_srclines() with dwarf_srclines_dealloc().
This set does not handle line table headers with no lines.

A newer set is dwarf_srclines_b() with
dwarf_srclines_from_linecontext() and
dwarf_srclines_dealloc_b(). These functions provide for handling both
DWARF2 through DWARF5 details and give access to line header information even if
there are no lines in a particular compilation unit’s line table.

Rev 3.17 7 November 2020 - 105 -

- 106 -

6.11.1 Get A Set of Lines (including skeleton line tables)

This set of functions works on any DWARF version. DWARF2,3,4,5 and the DWARF4
based experimental two-level line tables are all supported. What was once done by
dwarf_srclines() alone is now done with two calls as described here.

The interfaces support reading GNU two-level line tables. The format of such tables is a
topic beyond the scope of this document.

6.11.2 dwarf_srclines_b()

This is the

int dwarf_srclines_b(
Dwarf_Die die,
Dwarf_Unsigned *version_out,
Dwarf_Bool *is_single_table,
Dwarf_Line_Context *context_out,
Dwarf_Error *error)

dwarf_srclines_b() takes a single argument as input, a pointer to a compilation-
unit (CU) DIE. The other arguments are used to return values to the caller. On success
DW_DLV_OK is returned and values are returned through the pointers. If there is no line
table DW_DLV_NO_ENTRY is returned and no values are returned though the pointers. If
DW_DLV_ERROR is returned the involved is returned through the error pointer.

The values returned on success are:

*version_out() is set to the version number from the line table header for this CU.
The experimental two-level line table value is 0xf006. Standard numbers are 2,3,4 and 5.

*is_single_table() is set to non-zero if the line table is an ordinary single line
table. If the line table is anything else (either a line table header with no lines or an
experimental two-level line table) it is set to zero.

*context_out() is set to an opaque pointer to a Dwarf_Line_Context record
which in turn is used to get other data from this line table. See below.

See *dwarf_srclines_dealloc_b() for examples showing correct use.

6.11.3 dwarf_get_line_section_name_from_die()

int dwarf_get_line_section_name_from_die(
Dwarf_Die die,
const char ** sec_name,
Dwarf_Error *error)

*dwarf_get_line_section_name_from_die() retrieves the object file section
name of the applicable line section. This is useful for applications wanting to print the
name, but of course the object section name is not really a part of the DWARF

Rev 3.17 7 November 2020 - 106 -

- 107 -

information. Most applications will probably not call this function. It can be called at
any time after the Dwarf_Debug initialization is done.

If the function succeeds, *sec_name is set to a pointer to a string with the object
section name and the function returns DW_DLV_OK. Do not free the string whose pointer
is returned. For non-Elf objects it is possible the string pointer returned will be NULL or
will point to an empty string. It is up to the calling application to recognize this
possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

If there is an internal error detected the function returns DW_DLV_ERROR and sets the
*error pointer.

6.11.4 dwarf_srclines_from_linecontext()

int dwarf_srclines_from_linecontext(
Dwarf_Line_Context line_context,
Dwarf_Line ** linebuf,
Dwarf_Signed *linecount,
Dwarf_Error *error)

*dwarf_srclines_from_linecontext() gives access to the line tables. On
success it returns DW_DLV_OK and passes back line tables through the pointers.

Though DW_DLV_OK will not be returned callers should assume it is possible.

On error DW_DLV_ERROR is returned and the error code set through the error pointer.

On success:

*linebuf is set to an array of Dwarf_Line pointers.

*linecount is set to the number of pointers in the array.

6.11.5 dwarf_srclines_two_levelfrom_linecontext()

int dwarf_srclines_from_linecontext(
Dwarf_Line_Context line_context,
Dwarf_Line ** linebuf,
Dwarf_Signed *linecount,
Dwarf_Line ** linebuf_actuals,
Dwarf_Signed *linecount_actuals,
Dwarf_Error *error)

*dwarf_srclines_two_levelfrom_linecontext() gives access to the line
tables. On success it returns DW_DLV_OK and passes back line tables through the
pointers.

Though DW_DLV_OK will not be returned callers should assume it is possible.

On error DW_DLV_ERROR is returned and the error code set through the error pointer.

Rev 3.17 7 November 2020 - 107 -

- 108 -

On success:

*linebuf is set to an array of Dwarf_Line pointers.

*linecount is set to the number of pointers in the array.

If one is not intending that the experimental two-level line tables are of interest then pass
NULL for *linebuf_actuals and *linecount_actuals. The NULL pointers
notify the library that the second table is not to be passed back.

If a line table is actually a two-level tables *linebuf is set to point to an array of
Logicals lines. *linecount is set to the number of Logicals. *linebuf_actuals
is set to point to an array of Actuals lines. *linecount_actuals is set to the
number of Actuals.

6.11.6 dwarf_srclines_dealloc_b()

void dwarf_srclines_dealloc_b(
Dwarf_Line_Context line_context,
Dwarf_Error *error)

This does a complete deallocation of the memory of the Dwarf_Line_Context and
the Dwarf_Line array (or arrays) that came from the Dwarf_Line_Context. On
return you should set any local pointers to these buffers to NULL as a reminder that any
use of the local pointers would be to stale memory.

Figure 20. Examplec dwarf_srclines_b()

Rev 3.17 7 November 2020 - 108 -

- 109 -

void examplec(Dwarf_Die cu_die)
{

/* EXAMPLE: DWARF5 style access. */
Dwarf_Line *linebuf = 0;
Dwarf_Signed linecount = 0;
Dwarf_Line *linebuf_actuals = 0;
Dwarf_Signed linecount_actuals = 0;
Dwarf_Line_Context line_context = 0;
Dwarf_Signed linecount_total = 0;
Dwarf_Small table_count = 0;
Dwarf_Unsigned lineversion = 0;
Dwarf_Error err = 0;
int sres = 0;
/* ... */
/* we use ’return’ here to signify we can do nothing more

at this point in the code. */
sres = dwarf_srclines_b(cu_die,&lineversion,

&table_count,&line_context,&err);
if (sres != DW_DLV_OK) {

/* Handle the DW_DLV_NO_ENTRY or DW_DLV_ERROR
No memory was allocated so there nothing
to dealloc. */

return;
}
if (table_count == 0) {

/* A line table with no actual lines.
This occurs in a DWARF5 or DWARF5
DW_TAG_type_unit
as such has no lines of code
but needs data for
DW_AT_decl_file attributes. */

/*...do something, see dwarf_srclines_files_count()
etc below. */

dwarf_srclines_dealloc_b(line_context);
/* All the memory is released, the line_context

and linebuf zeroed now
as a reminder they are stale. */

linebuf = 0;
line_context = 0;

} else if (table_count == 1) {
Dwarf_Signed i = 0;
Dwarf_Signed baseindex = 0;
Dwarf_Signed file_count = 0;
Dwarf_Signed endindex = 0;
/* Standard dwarf 2,3,4, or 5 line table */

Rev 3.17 7 November 2020 - 109 -

- 110 -

/* Do something. */

/* First let us index through all the files listed
in the line table header. */

sres = dwarf_srclines_files_indexes(line_context,
&baseindex,&file_count,&endindex,&err);

if (sres != DW_DLV_OK) {
/* Something badly wrong! */
return;

}
/* Works for DWARF2,3,4 (one-based index)

and DWARF5 (zero-based index) */
for (i = baseindex; i < endindex; i++) {

Dwarf_Unsigned dirindex = 0;
Dwarf_Unsigned modtime = 0;
Dwarf_Unsigned flength = 0;
Dwarf_Form_Data16 *md5data = 0;
int vres = 0;
const char *name = 0;

vres = dwarf_srclines_files_data_b(line_context,i,
&name,&dirindex, &modtime,&flength,
&md5data,&err);

if (vres != DW_DLV_OK) {
/* something very wrong. */
return;

}
/* Do something. */

}

/* For this case where we have a line table we will likely
wish to get the line details: */

sres = dwarf_srclines_from_linecontext(line_context,
&linebuf,&linecount,
&err);

if (sres != DW_DLV_OK) {
/* Error. Clean up the context information. */
dwarf_srclines_dealloc_b(line_context);
return;

}
/* The lines are normal line table lines. */
for (i = 0; i < linecount; ++i) {

/* use linebuf[i] */
}
dwarf_srclines_dealloc_b(line_context);

Rev 3.17 7 November 2020 - 110 -

- 111 -

/* All the memory is released, the line_context
and linebuf zeroed now as a reminder they are stale */

linebuf = 0;
line_context = 0;
linecount = 0;

} else {
Dwarf_Signed i = 0;
/* ASSERT: table_count == 2,

Experimental two-level line table. Version 0xf006
We do not define the meaning of this non-standard
set of tables here. */

/* For ’something C’ (two-level line tables)
one codes something like this
Note that we do not define the meaning or use of two-level line
tables as these are experimental, not standard DWARF. */

sres = dwarf_srclines_two_level_from_linecontext(line_context,
&linebuf,&linecount,
&linebuf_actuals,&linecount_actuals,
&err);

if (sres == DW_DLV_OK) {
for (i = 0; i < linecount; ++i) {

/* use linebuf[i], these are the ’logicals’ entries. */
}
for (i = 0; i < linecount_actuals; ++i) {

/* use linebuf_actuals[i], these are the actuals entries */
}
dwarf_srclines_dealloc_b(line_context);
line_context = 0;
linebuf = 0;
linecount = 0;
linebuf_actuals = 0;
linecount_actuals = 0;

} else if (sres == DW_DLV_NO_ENTRY) {
/* This should be impossible, but do something. */
/* Then Free the line_context */
dwarf_srclines_dealloc_b(line_context);
line_context = 0;
linebuf = 0;
linecount = 0;
linebuf_actuals = 0;
linecount_actuals = 0;

} else {
/* ERROR, show the error or something.

Free the line_context. */
dwarf_srclines_dealloc_b(line_context);

Rev 3.17 7 November 2020 - 111 -

- 112 -

line_context = 0;
linebuf = 0;
linecount = 0;
linebuf_actuals = 0;
linecount_actuals = 0;

}
}

}

6.12 Line Context Details (DWARF5 style)

New in October 2015. When a Dwarf_Line_Context has been returned by
dwarf_srclines_b() that line context data’s details can be retrieved with the
following set of calls.

6.12.1 dwarf_srclines_table_offset()

int dwarf_srclines_table_offset(Dwarf_Line_Context line_context,
Dwarf_Unsigned * offset,
Dwarf_Error * error);

On success, this function returns the offset (in the object file line section) of the actual
line data (i.e. after the line header for this compilation unit) through the offset pointer.
The offset is probably only of interest when printing detailed information about a line
table header.

In case of error, DW_DLV_ERROR is returned and the error is set through the error
pointer. DW_DLV_NO_ENTRY will not be returned.

6.12.2 dwarf_srclines_version()

int dwarf_srclines_version(Dwarf_Line_Context line_context,
Dwarf_Unsigned * version,
Dwarf_Error * error);

On success DW_DLV_OK is returned and the line table version number is returned
through the version pointer.

In case of error, DW_DLV_ERROR is returned and the error is set through the error
pointer. DW_DLV_NO_ENTRY will not be returned.

6.12.3 dwarf_srclines_comp_dir()

int dwarf_srclines_comp_dir(Dwarf_Line_Context line_context,
const char ** compilation_directory,
Dwarf_Error * error);

On success this returns a pointer to the compilation directory string for this line table in

Rev 3.17 7 November 2020 - 112 -

- 113 -

*compilation_directory. That compilation string may be NULL or the empty
string. The string pointer is valid until the line_context has been deallocated.

In case of error, DW_DLV_ERROR is returned and the error is set through the error
pointer. DW_DLV_NO_ENTRY will not be returned.

6.12.4 dwarf_srclines_files_indexes()

int dwarf_srclines_files_indexes(Dwarf_Line_Context line_context,
Dwarf_Signed * baseindex,
Dwarf_Signed * count,
Dwarf_Signed * endindex,
Dwarf_Error * error);

With DWARF5 the base file number index in the line table changed from zero
(DWARF2,3,4) to one (DWARF5). Which meant iterating through the valid source file
indexes became messy if one used the older dwarf_srclines_files_count()
function (zero-based and one-based indexing being incompatible). See Figure
"Examplec dwarf_srclines_b()" above for use of this function in accessing file names.

The base index of files in the files list of a line table header will be returned through
baseindex.

The number of files in the files list of a line table header will be returned through count.

The end index of files in the files list of a line table header will be returned through
endindex.

In case of error, DW_DLV_ERROR is returned and the error is set through the error
pointer. DW_DLV_NO_ENTRY will not be returned.

6.12.5 dwarf_srclines_files_count()

int dwarf_srclines_files_count(Dwarf_Line_Context line_context,
Dwarf_Signed * count,
Dwarf_Error * error);

On success, the number of files in the files list of a line table header will be returned
through count.

In case of error, DW_DLV_ERROR is returned and the error is set through the error
pointer. DW_DLV_NO_ENTRY will not be returned.

6.12.6 dwarf_srclines_files_data_b()

This supplants dwarf_srclines_files_data() as of March 2018 to allow access

Rev 3.17 7 November 2020 - 113 -

- 114 -

to the md5 value in DWARF5. The function dwarf_srclines_files_data()
continues to be supported.

int dwarf_srclines_files_data_b(Dwarf_Line_Context line_context,
Dwarf_Signed index,
const char ** name,
Dwarf_Unsigned * directory_index,
Dwarf_Unsigned * last_mod_time,
Dwarf_Unsigned * file_length,
Dwarf_Form_Data16 ** md5_value,
Dwarf_Error * error);

On success, data about a single file in the files list will be returned through the pointers.
See DWARF documentation for the meaning of these fields. count. Valid index.
values are 1 through count, reflecting the way the table is defined by DWARF2,3,4. For
a dwarf5 line table index values 0...count-1 are legal. This is certainly awkward.

If md5_value is non-null it is used to pass a back a pointer to a
Dwarf_Form_Data16 md5 value if the md5 value is present. Otherwise a zero value
is passed back to indicate there was no such field. The 16-byte value pointed to is inside
the line_context, so if you want to keep the value you should probably copy it to storage
you control.

This returns the raw files data from the line table header.

In case of error, DW_DLV_ERROR is returned and the error is set through the error
pointer. DW_DLV_NO_ENTRY will not be returned.

6.12.7 dwarf_srclines_files_data()

This interface was created in October 2015. It cannot return the DWARF5 MD5 value.
See the newer dwarf_srclines_files_data_b().

int dwarf_srclines_files_data(Dwarf_Line_Context line_context,
Dwarf_Signed index,
const char ** name,
Dwarf_Unsigned * directory_index,
Dwarf_Unsigned * last_mod_time,
Dwarf_Unsigned * file_length,
Dwarf_Error * error);

On success, data about a single file in the files list will be returned through the pointers.
See DWARF documentation for the meaning of these fields. count. Valid index.
values are 1 through count, reflecting the way the table is defined by DWARF2,3,4. For
a dwarf5 line table index values 0...count-1 are legal. This is certainly awkward.

This returns the raw files data from the line table header.

In case of error, DW_DLV_ERROR is returned and the error is set through the error
pointer. DW_DLV_NO_ENTRY will not be returned.

Rev 3.17 7 November 2020 - 114 -

- 115 -

6.12.8 dwarf_srclines_include_dir_count()

int dwarf_srclines_include_dir_count(Dwarf_Line_Context line_context,
Dwarf_Signed * count,
Dwarf_Error * error);

On success, the number of files in the includes list of a line table header will be returned
through count.

Valid index. values are 1 through count, reflecting the way the table is defined by
DWARF 2,3 and 4. For a dwarf5 line table index values 0...count-1 are legal. This is
certainly awkward.

In case of error, DW_DLV_ERROR is returned and the error is set through the error
pointer. DW_DLV_NO_ENTRY will not be returned.

6.12.9 dwarf_srclines_include_dir_data()

int dwarf_srclines_include_dir_data(Dwarf_Line_Context line_context,
Dwarf_Signed index,
const char ** name,
Dwarf_Error * error);

On success, data about a single file in the include files list will be returned through the
pointers. See DWARF documentation for the meaning of these fields.

Valid index. values are 1 through count, reflecting the way the table is defined by
DWARF.

In case of error, DW_DLV_ERROR is returned and the error is set through the error
pointer. DW_DLV_NO_ENTRY will not be returned.

6.12.10 dwarf_srclines_subprog_count()

int dwarf_srclines_subprog_count(Dwarf_Line_Context
line_context,

Dwarf_Signed * count,
Dwarf_Error * error); This is only useful with experimental two-level

line tables.

6.12.11 dwarf_srclines_subprog_data()

int dwarf_srclines_subprog_data(Dwarf_Line_Context
line_context,

Dwarf_Signed index,
const char ** name,
Dwarf_Unsigned * decl_file,
Dwarf_Unsigned * decl_line,
Dwarf_Error * error); This is only useful with experimental two-level

line tables.

Rev 3.17 7 November 2020 - 115 -

- 116 -

6.13 Get A Set of Lines (DWARF2,3,4 style)

The function returns information about every source line for a particular compilation-
unit. The compilation-unit is specified by the corresponding die. It does not support line
tables with no lines very well nor does it support experimental two-level linetables.

6.13.1 dwarf_srclines()

int dwarf_srclines(
Dwarf_Die die,
Dwarf_Line **linebuf,
Dwarf_Signed *linecount,
Dwarf_Error *error)

This function is not useful for DWARF5 skeleton line tables nor for two-level line tables.
It works for DWARF2,3,4,5 ordinary single line tables. The function
dwarf_srclines() places all line number descriptors for a single compilation unit
into a single block, sets *linebuf to point to that block, sets *linecount to the
number of descriptors in this block and returns DW_DLV_OK.

To get a more detailed view of the contents of a dwarf line table header see
dwarf_srclines_b() and the routines that use the Dwarf_Line_Context
information, such as dwarf_srcfiles_comp_dir(),
dwarf_srclines_files_count(),
dwarf_srclines_include_dir_count() and similar functions.

The compilation-unit is indicated by the given die which must be a compilation-unit die.
It returns DW_DLV_ERROR on error. On successful return, line number information
should be freed using dwarf_srclines_dealloc() when no longer of interest.

Figure 21. Exampled dwarf_srclines()

Rev 3.17 7 November 2020 - 116 -

- 117 -

void exampled(Dwarf_Debug dbg,Dwarf_Die somedie)
{

Dwarf_Signed count = 0;
Dwarf_Line *linebuf = 0;
Dwarf_Signed i = 0;
Dwarf_Error error = 0;
int sres = 0;

sres = dwarf_srclines(somedie, &linebuf,&count, &error);
if (sres == DW_DLV_OK) {

for (i = 0; i < count; ++i) {
/* use linebuf[i] */

}
dwarf_srclines_dealloc(dbg, linebuf, count);

}
}

An alternative using dwarf_dealloc() directly is no longer (as of 2015) described
here. It works as well as ever, but it has been obsolete since 2005. still works, but does
not completely free all data allocated. The dwarf_srclines_dealloc() routine
was created to fix the problem of incomplete deallocation.

6.14 Get the set of Source File Names

The function returns the names of the source files that have contributed to the
compilation-unit represented by the given DIE. Only the source files named in the
statement program prologue (which in current DWARF standards is referred to as the
Line Table Header) are returned.

6.14.1 dwarf_srcfiles()

This works for for all line tables. However indexing is different in DWARF5 than in
other versions of dwarf. To understand the DWARF5 version look at the following which
explains a contradiction in the DWARF5 document and how libdwarf (and at least some
compilers) resolve it. Join the next two strings together with no spaces to recreate the
web reference.

If the applicable file name in the line table Statement Program Prolog does not start with
a ’/’ character the string in DW_AT_comp_dir (if applicable and present) and the
applicable directory name from the line Statement Program Prolog is prepended to the
file name in the line table Statement Program Prolog to make a full path.

For all versions of dwarf this function and dwarf_linesrc() prepend the value of
DW_AT_co prepend the value of DW_AT_comp_dir to the name created from the line
table header file names and directory names if the line table header name(s) are not full
paths.mp_dir to the name created from the line table header file names and directory

Rev 3.17 7 November 2020 - 117 -

- 118 -

names if the line table header name(s) are not full paths.

http://wiki.dwarfstd.org/index.php?title =DWARF5_Line_Table_File_Numbers

It may help understand the file tables and dwarf_srcfiles() to use dwarfdump. The
dwarfdump utility program now will print the dwarf_srcfiles() values in addition to the
compilation unit DIE and the line table header details (and much more) if one does
"dwarfdump -vvv -i -l <objfilename>" or "dwarfdump -vvv -a <objfilename>" for
example. Since the output can be large, with your editor focus on lines beginning with
"COMPILE_UNIT" (do not type the quotes) to quickly get to the CU die and the line
table for that CU as those tend to be far apart in the output.

DWARF5: DW_MACRO_start_file, DW_LNS_set_file, DW_AT_decl_file,
DW_AT_call_file, and the line table state machine file numbers begin at zero. To
index srcfiles use the values directly with no subtraction.

DWARF2-4 and experimental line table: DW_MACINFO_start_file,
DW_LNS_set_file, DW_AT_decl_file, and line table state machine file numbers
begin at one. In all these the value of 0 means there is no source file or source file name.
To index the srcfiles array subtract one from the DW_AT_decl_file (etc) file number.

int dwarf_srcfiles(
Dwarf_Die die,
char ***srcfiles,
Dwarf_Signed *srccount,
Dwarf_Error *error)

When it succeeds dwarf_srcfiles() returns DW_DLV_OK and puts the number of
source files named in the statement program prologue indicated by the given die into
*srccount. Source files defined in the statement program are ignored. The given die
should have the tag DW_TAG_compile_unit, DW_TAG_partial_unit, or
DW_TAG_type_unit The location pointed to by srcfiles is set to point to a list of
pointers to null-terminated strings that name the source files.

On a successful return from dwarf_srcfiles() each of the strings returned should
be individually freed using dwarf_dealloc() with the allocation type
DW_DLA_STRING when no longer of interest. This should be followed by free-ing the
list using dwarf_dealloc() with the allocation type DW_DLA_LIST. It returns
DW_DLV_ERROR on error. It returns DW_DLV_NO_ENTRY if there is no corresponding
statement program (i.e., if there is no line information).

Figure 22. Exampled dwarf_srcfiles()

Rev 3.17 7 November 2020 - 118 -

- 119 -

void examplee(Dwarf_Debug dbg,Dwarf_Die somedie)
{

Dwarf_Signed count = 0;
char **srcfiles = 0;
Dwarf_Signed i = 0;
Dwarf_Error error = 0;
int res = 0;

res = dwarf_srcfiles(somedie, &srcfiles,&count,&error);
if (res == DW_DLV_OK) {

for (i = 0; i < count; ++i) {
/* use srcfiles[i] */
dwarf_dealloc(dbg, srcfiles[i], DW_DLA_STRING);

}
dwarf_dealloc(dbg, srcfiles, DW_DLA_LIST);

}
}

6.15 Get Information About a Single Line Table Line

The following functions can be used on the Dwarf_Line descriptors returned by
dwarf_srclines() or dwarf_srclines_from_linecontext() to obtain
information about the source lines.

6.15.1 dwarf_linebeginstatement()

int dwarf_linebeginstatement(
Dwarf_Line line,
Dwarf_Bool *return_bool,
Dwarf_Error *error)

The function dwarf_linebeginstatement() returns DW_DLV_OK and sets
*return_bool to non-zero (if line represents a line number entry that is marked as
beginning a statement). or zero ((if line represents a line number entry that is not
marked as beginning a statement). It returns DW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY.

6.15.2 dwarf_lineendsequence()

int dwarf_lineendsequence(
Dwarf_Line line,
Dwarf_Bool *return_bool,
Dwarf_Error *error)

The function dwarf_lineendsequence() returns DW_DLV_OK and sets
*return_bool non-zero (in which case line represents a line number entry that is
marked as ending a text sequence) or zero (in which case line represents a line number
entry that is not marked as ending a text sequence). A line number entry that is marked

Rev 3.17 7 November 2020 - 119 -

- 120 -

as ending a text sequence is an entry with an address one beyond the highest address used
by the current sequence of line table entries (that is, the table entry is a
DW_LNE_end_sequence entry (see the DWARF specification)).

The function dwarf_lineendsequence() returns DW_DLV_ERROR on error. It
never returns DW_DLV_NO_ENTRY.

6.15.3 dwarf_lineno()

int dwarf_lineno(
Dwarf_Line line,
Dwarf_Unsigned * returned_lineno,
Dwarf_Error * error)

The function dwarf_lineno() returns DW_DLV_OK and sets *return_lineno to
the source statement line number corresponding to the descriptor line. It returns
DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

6.15.4 dwarf_line_srcfileno()

int dwarf_line_srcfileno(
Dwarf_Line line,
Dwarf_Unsigned * returned_fileno,
Dwarf_Error * error)

The function dwarf_line_srcfileno() returns DW_DLV_OK and sets
*returned_fileno to the source statement line number corresponding to the
descriptor file number.

DWARF2-4 and experimental: When the number returned through
*returned_fileno is zero it means the file name is unknown (see the DWARF2/3
line table specification). When the number returned through *returned_fileno is
non-zero it is a file number: subtract 1 from this file number to get an index into the array
of strings returned by dwarf_srcfiles() (verify the resulting index is in range for
the array of strings before indexing into the array of strings). The file number may
exceed the size of the array of strings returned by dwarf_srcfiles() because
dwarf_srcfiles() does not return files names defined with the
DW_DLE_define_file operator.

DWARF5: To index into the array of strings returned by dwarf_srcfiles() use the
number returned through *returned_fileno.

The function dwarf_line_srcfileno() returns DW_DLV_ERROR on error. It
never returns DW_DLV_NO_ENTRY.

6.15.5 dwarf_lineaddr()

Rev 3.17 7 November 2020 - 120 -

- 121 -

int dwarf_lineaddr(
Dwarf_Line line,
Dwarf_Addr *return_lineaddr,
Dwarf_Error *error)

The function dwarf_lineaddr() returns DW_DLV_OK and sets
*return_lineaddr to the address associated with the descriptor line. It returns
DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

6.15.6 dwarf_lineoff()

int dwarf_lineoff(
Dwarf_Line line,
Dwarf_Signed * return_lineoff,
Dwarf_Error *error)

The function dwarf_lineoff() returns DW_DLV_OK and sets *return_lineoff
to the column number at which the statement represented by line begins.

It sets return_lineoff to zero if the column number of the statement is not
represented (meaning the producer library call was given zero as the column number).
Zero is the correct value meaning "left edge" as defined in the DWARF2/3/4 specication
(section 6.2.2).

Before December 2011 zero was not returned through the return_lineoff pointer,
-1 was returned through the pointer. The reason for this oddity is unclear, lost in history.
But there is no good reason for -1.

The type of return_lineoff is a pointer-to-signed, but there is no good reason for
the value to be signed, the DWARF specification does not deal with negative column
numbers. However, changing the declaration would cause compilation errors for little
benefit, so the pointer-to-signed is left unchanged.

On error it returns DW_DLV_ERROR. It nev er returns DW_DLV_NO_ENTRY.

6.15.7 dwarf_lineoff_b()

int dwarf_lineoff_b(
Dwarf_Line line,
Dwarf_Unsigned * return_lineoff,
Dwarf_Error *error)

The function dwarf_lineoff_b() returns exactly the same as dwarf_lineoff()
except the line offset returned through return_lineoff() is an unsigned value. The
signed return offset never made much sense but was harmless since line lengths are
limited by most language standards.

6.15.8 dwarf_linesrc()

Rev 3.17 7 November 2020 - 121 -

- 122 -

int dwarf_linesrc(
Dwarf_Line line,
char ** return_linesrc,
Dwarf_Error *error)

The function dwarf_linesrc() returns DW_DLV_OK and sets *return_linesrc
to a pointer to a null-terminated string of characters that represents the name of the
source-file where line occurs. It returns DW_DLV_ERROR on error.

If the applicable file name in the line table Statement Program Prolog does not start with
a ’/’ character the string in DW_AT_comp_dir (if applicable and present) or the
applicable directory name from the line Statement Program Prolog is prepended to the
file name in the line table Statement Program Prolog to make a full path.

The storage pointed to by a successful return of dwarf_linesrc() should be freed
using dwarf_dealloc() with the allocation type DW_DLA_STRING when no longer
of interest. It never returns DW_DLV_NO_ENTRY.

6.15.9 dwarf_lineblock()

int dwarf_lineblock(
Dwarf_Line line,
Dwarf_Bool *return_bool,
Dwarf_Error *error)

The function dwarf_lineblock() returns DW_DLV_OK and sets
*return_linesrc to non-zero (i.e. true)(if the line is marked as beginning a basic
block) or zero (i.e. false) (if the line is marked as not beginning a basic block). It returns
DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

6.15.10 dwarf_is_addr_set()

int dwarf_line_is_addr_set(
Dwarf_Line line,
Dwarf_Bool *return_bool,
Dwarf_Error *error)

The function dwarf_line_is_addr_set() returns DW_DLV_OK and sets
*return_bool to non-zero (i.e. true)(if the line is marked as being a
DW_LNE_set_address operation) or zero (i.e. false) (if the line is marked as not being a
DW_LNE_set_address operation). It returns DW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY.

This is intended to allow consumers to do a more useful job printing and analyzing
DWARF data, it is not strictly necessary.

Rev 3.17 7 November 2020 - 122 -

- 123 -

6.15.11 dwarf_prologue_end_etc()

int dwarf_prologue_end_etc(Dwarf_Line line,
Dwarf_Bool * prologue_end,
Dwarf_Bool * epilogue_begin,
Dwarf_Unsigned * isa,
Dwarf_Unsigned * discriminator,
Dwarf_Error * error)

The function dwarf_prologue_end_etc() returns DW_DLV_OK and sets the
returned fields to values currently set. While it is pretty safe to assume that the isa and
discriminator values returned are very small integers, there is no restriction in the
standard. It returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

This function is new in December 2011.

6.16 Accelerated Access By Name operations

These operations operate on the .debug_pubnames section as well as all the other sections
with this specific format and purpose:
.debug_pubtypes,
.debug_typenames,
.debug_varnames,
.debug_funcnames,
and .debug_weaknames. The first in the list is generic DWARF 2,3,4. The second in the
list is generic DWARF 3,4. The rest are SGI specific and rarely used.

The interface types are Dwarf_Global Dwarf_Type,Dwarf_Weak,Dwarf_Func, and
Dwarf_Var. Only Dwarf_Global is a real type. The others are opaque pointers with no
actual definition or instantiation and can be converted to Dwarf_Global with a simple
cast.

In hindsight it would have been simpler to write a single set of interfaces for Accelerated
Access By Name.

6.16.1 Fine Tuning Accelerated Access

By default the various dwarf_get*() functions here return an array of pointers to opaque
records with a .debug_info DIE offset and a string (the fields are accessible by function
calls). While the actual .debug_pubnames (etc) section contains CU-local DIE offsets for
the named things the accelerated access functions below return a .debug_info (or
.debug_types) global section offset.

6.16.1.1 dwarf_return_empty_pubnames

New March 2019. Mostly special for dwarfdump. If called with a flag value of one (1) it

Rev 3.17 7 November 2020 - 123 -

- 124 -

tells libdwarf, for any pubnames(etc) section list returned to add to the list an entry with a
global-DIE-offset of zero (0) for any section Compilation Unit entry with no
pubnames(etc) name(ie, an empty list for the Compilation Unit).

If called with a value of zero(0) (zero is the default set by any dwarf_init*() call) it
causes such empty lists to be omitted from the array of pointers returned, which is the
standard behavior of libdwarf since libdwarf was first written.

Since zero is never a valid DIE offset in .debug_info (or .debug_types) consumers
requesting such can detect the special Dwarf_Global entries.

For example, calling
dwarf_global_name_offsets() on one of the special global records sets

*die_offset to 0, *return_name to a pointer to an empty string, and
*cu_offset to the offset of the compilation unit die in the .debug_info (or
.debug_types if applicable) section.

int dwarf_return_empty_pubnames(Dwarf_Debug dbg,
int flag ,
Dwarf_Error* error)

Callers should pass in one (1) or zero(0), no other value. On success it returns
DW_DLV_OK. On failure it returns DW_DLV_ERROR;

The assumption is that programs calling this with value one (1) will be calling
dwarf_get_globals_header() to retrieve the relevant pubnames(etc) section Compilation
Unit header.

6.16.1.2 dwarf_get_globals_header

New February 2019. For more complete dwarfdump printing. For each CU represented
in .debug_pubnames, etc, there is a .debug_pubnames header. For any giv en
Dwarf_Global this returns the content of the applicable header.

This allows dwarfdump, or any DWARF dumper, to print pubnames(etc) specific CU
header data.

int dwarf_get_globals_header(Dwarf_Global global,
Dwarf_Off * offset_pub_header,
Dwarf_Unsigned * offset_size,
Dwarf_Unsigned * length_pub,
Dwarf_Unsigned * version,
Dwarf_Unsigned * header_info_offset,
Dwarf_Unsigned * info_length,
Dwarf_Error* error)

On success it returns DW_DLV_OK and it returns the header data (and calculated values)
though the pointers. Casting Dwarf_Type (etc) to Dwarf_Global for a call to this

Rev 3.17 7 November 2020 - 124 -

- 125 -

function allows this to be used for any of these accelerated-access types.

6.16.2 Accelerated Access Pubnames

6.16.2.1 dwarf_get_globals()

This is .debug_pubnames and is standard DWARF2, DWARF3, and DWARF4.

int dwarf_get_globals(
Dwarf_Debug dbg,
Dwarf_Global **globals,
Dwarf_Signed * return_count,
Dwarf_Error *error)

The function dwarf_get_globals() returns DW_DLV_OK and sets
*return_count to the count of pubnames represented in the section containing
pubnames i.e. .debug_pubnames. It also stores at *globals, a pointer to a list of
Dwarf_Global descriptors, one for each of the pubnames in the .debug_pubnames
section. The returned results are for the entire section. It returns DW_DLV_ERROR on
error. It returns DW_DLV_NO_ENTRY if the .debug_pubnames section does not exist.

On a successful return from dwarf_get_globals(), the Dwarf_Global
descriptors should be freed using dwarf_globals_dealloc().
dwarf_globals_dealloc() is new as of July 15, 2005 and is the preferred
approach to freeing this memory..

Global names refer exclusively to names and offsets in the .debug_info section. See
section 6.1.1 "Lookup by Name" in the dwarf standard.

Figure 23. Exampled dwarf_get_globals()

Rev 3.17 7 November 2020 - 125 -

- 126 -

void examplef(Dwarf_Debug dbg)
{

Dwarf_Signed count = 0;
Dwarf_Global *globs = 0;
Dwarf_Signed i = 0;
Dwarf_Error error = 0;
int res = 0;

res = dwarf_get_globals(dbg, &globs,&count, &error);
if (res == DW_DLV_OK) {

for (i = 0; i < count; ++i) {
/* use globs[i] */

}
dwarf_globals_dealloc(dbg, globs, count);

}
}

The following code is deprecated as of July 15, 2005 as it does not free all relevant
memory. This approach still works as well as it ever did. On a successful return from
dwarf_get_globals(), the Dwarf_Global descriptors should be individually
freed using dwarf_dealloc() with the allocation type
DW_DLA_GLOBAL_CONTEXT, (or DW_DLA_GLOBAL, an older name, supported for
compatibility) followed by the deallocation of the list itself with the allocation type
DW_DLA_LIST when the descriptors are no longer of interest.

Dwarf_Signed cnt;
Dwarf_Global *globs;
int res;

res = dwarf_get_globals(dbg, &globs,&cnt, &error);
if (res == DW_DLV_OK) {

/* OBSOLETE: DO NOT USE to deallocate*/
for (i = 0; i < cnt; ++i) {

/* use globs[i] */
dwarf_dealloc(dbg, globs[i], DW_DLA_GLOBAL_CONTEXT);

}
dwarf_dealloc(dbg, globs, DW_DLA_LIST);

}

6.16.2.2 dwarf_globname()

Rev 3.17 7 November 2020 - 126 -

- 127 -

int dwarf_globname(
Dwarf_Global global,
char ** return_name,
Dwarf_Error *error)

The function dwarf_globname() returns DW_DLV_OK and sets *return_name to
a pointer to a null-terminated string that names the pubname represented by the
Dwarf_Global descriptor, global. It returns DW_DLV_ERROR on error. On a
successful return from this function, the string should be freed using
dwarf_dealloc(), with the allocation type DW_DLA_STRING when no longer of
interest. It never returns DW_DLV_NO_ENTRY.

6.16.2.3 dwarf_global_die_offset()

int dwarf_global_die_offset(
Dwarf_Global global,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_global_die_offset() returns DW_DLV_OK and sets
*return_offset to the offset in the section containing DIEs, i.e. .debug_info, of the
DIE representing the pubname that is described by the Dwarf_Global descriptor,
glob. It returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

6.16.2.4 dwarf_global_cu_offset()

int dwarf_global_cu_offset(
Dwarf_Global global,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_global_cu_offset() returns DW_DLV_OK and sets
*return_offset to the offset in the section containing DIEs, i.e. .debug_info, of the
compilation-unit header of the compilation-unit that contains the pubname described by
the Dwarf_Global descriptor, global. It returns DW_DLV_ERROR on error. It nev er
returns DW_DLV_NO_ENTRY.

6.16.2.5 dwarf_get_cu_die_offset_given_cu_header_offset()

int dwarf_get_cu_die_offset_given_cu_header_offset_b(
Dwarf_Debug dbg,
Dwarf_Off in_cu_header_offset,

Dwarf_Bool is_info,
Dwarf_Off * out_cu_die_offset,
Dwarf_Error *error)

The function dwarf_get_cu_die_offset_given_cu_header_offset()
returns DW_DLV_OK and sets *out_cu_die_offset to the offset of the compilation-
unit DIE given the offset in_cu_header_offset of a compilation-unit header. It

Rev 3.17 7 November 2020 - 127 -

- 128 -

returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

If is_info is non-zero the in_cu_header_offset must refer to a .debug_info
section offset. If is_info zero the in_cu_header_offset must refer to a
.debug_types section offset. Chaos may result if the is_info flag is incorrect.

This effectively turns a compilation-unit-header offset into a compilation-unit DIE offset
(by adding the size of the applicable CU header). This function is also sometimes useful
with the dwarf_weak_cu_offset(), dwarf_func_cu_offset(),
dwarf_type_cu_offset(), and int dwarf_var_cu_offset() functions,
though for those functions the data is only in .debug_info by definition.

6.16.2.6 dwarf_get_cu_die_offset_given_cu_header_offset()

int dwarf_get_cu_die_offset_given_cu_header_offset(
Dwarf_Debug dbg,
Dwarf_Off in_cu_header_offset,
Dwarf_Off * out_cu_die_offset,
Dwarf_Error *error)

This function is superseded by
dwarf_get_cu_die_offset_given_cu_header_offset_b(), a function
which is still supported thought it refers only to the .debug_info section.

dwarf_get_cu_die_offset_given_cu_header_offset() added Rev 1.45,
June, 2001.

This function was declared as ’optional’ in libdwarf.h on IRIX systems so the
_MIPS_SYMBOL_PRESENT predicate could be used at run time to determine if the
version of libdwarf linked into an application has this function.

6.16.2.7 dwarf_global_name_offsets()

int dwarf_global_name_offsets(
Dwarf_Global global,
char **return_name,
Dwarf_Off *die_offset,
Dwarf_Off *cu_die_offset,
Dwarf_Error *error)

The function dwarf_global_name_offsets() returns DW_DLV_OK and sets
*return_name to a pointer to a null-terminated string that gives the name of the
pubname described by the Dwarf_Global descriptor global. It returns
DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY. It also returns in the
locations pointed to by die_offset, and cu_offset, the global offset of the DIE
representing the pubname, and the offset of the DIE representing the compilation-unit
containing the pubname, respectively. On a successful return from
dwarf_global_name_offsets() the storage pointed to by return_name
should be freed using dwarf_dealloc(), with the allocation type DW_DLA_STRING

Rev 3.17 7 November 2020 - 128 -

- 129 -

when no longer of interest.

If a portion of .debug_pubnames (or .debug_types etc) represents a compilation unit with
no names there is a .debug_pubnames header there with no content. In that case a single
Dwarf_Global record is created with the value of *die_offset zero and the name-pointer
returned points to the empty string. A zero is never a valid DIE offset, so zero always
means this is an uninteresting (Dwarf_Global).

6.16.3 Accelerated Access Pubtypes

Section ".debug_pubtypes" is in DWARF3 and DWARF4.

These functions operate on the .debug_pubtypes section of the debugging information.
The .debug_pubtypes section contains the names of file-scope user-defined types, the
offsets of the DIEs that represent the definitions of those types, and the offsets of the
compilation-units that contain the definitions of those types.

6.16.3.1 dwarf_get_pubtypes()

This is standard DWARF3 and DWARF4.

int dwarf_get_pubtypes(
Dwarf_Debug dbg,
Dwarf_Type **types,
Dwarf_Signed *typecount,
Dwarf_Error *error)

The function dwarf_get_pubtypes() returns DW_DLV_OK and sets *typecount
to the count of user-defined type names represented in the section containing user-defined
type names, i.e. .debug_pubtypes. It also stores at *types, a pointer to a list of
Dwarf_Type descriptors, one for each of the user-defined type names in the
.debug_pubtypes section. The returned results are for the entire section. It returns
DW_DLV_NOCOUNT on error. It returns DW_DLV_NO_ENTRY if the .debug_pubtypes
section does not exist.

On a successful return from dwarf_get_pubtypes(), the Dwarf_Type descriptors
should be freed using dwarf_types_dealloc(). dwarf_types_dealloc() is
used for both dwarf_get_pubtypes() and dwarf_get_types() as the data
types are the same.

Global type names refer exclusively to names and offsets in the .debug_info section. See
section 6.1.1 "Lookup by Name" in the dwarf standard.

Figure 24. Exampled dwarf_get_pubtypes()

Rev 3.17 7 November 2020 - 129 -

- 130 -

Avoid exampleg(Dwarf_Debug dbg)
{

Dwarf_Error error = 0;
Dwarf_Signed count = 0;
Dwarf_Type *types = 0;
Dwarf_Signed i = 0;
int res = 0;

res = dwarf_get_pubtypes(dbg, &types,&count, &error);
if (res == DW_DLV_OK) {

for (i = 0; i < count; ++i) {
/* use types[i] */

}
dwarf_types_dealloc(dbg, types, count);

}
}

6.16.3.2 dwarf_pubtypename()

int dwarf_pubtypename(
Dwarf_Type type,
char **return_name,
Dwarf_Error *error)

The function dwarf_pubtypename() returns DW_DLV_OK and sets
*return_name to a pointer to a null-terminated string that names the user-defined type
represented by the Dwarf_Type descriptor, type. It returns DW_DLV_ERROR on
error. It nev er returns DW_DLV_NO_ENTRY. On a successful return from this function,
the string should be freed using dwarf_dealloc(), with the allocation type
DW_DLA_STRING when no longer of interest.

6.16.3.3 dwarf_pubtype_type_die_offset()

int dwarf_pubtype_type_die_offset(
Dwarf_Type type,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_pubtype_type_die_offset() returns DW_DLV_OK and
sets *return_offset to the offset in the section containing DIEs, i.e. .debug_info, of
the DIE representing the user-defined type that is described by the Dwarf_Type
descriptor, type. It returns DW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY.

Rev 3.17 7 November 2020 - 130 -

- 131 -

6.16.3.4 dwarf_pubtype_cu_offset()

int dwarf_pubtype_cu_offset(
Dwarf_Type type,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_pubtype_cu_offset() returns DW_DLV_OK and sets
*return_offset to the offset in the section containing DIEs, i.e. .debug_info, of the
compilation-unit header of the compilation-unit that contains the user-defined type
described by the Dwarf_Type descriptor, type. It returns DW_DLV_ERROR on error.
It never returns DW_DLV_NO_ENTRY.

6.16.3.5 dwarf_pubtype_name_offsets()

int dwarf_pubtype_name_offsets(
Dwarf_Type type,
char ** returned_name,
Dwarf_Off * die_offset,
Dwarf_Off * cu_offset,
Dwarf_Error *error)

The function dwarf_pubtype_name_offsets() returns DW_DLV_OK and sets
*returned_name to a pointer to a null-terminated string that gives the name of the
user-defined type described by the Dwarf_Type descriptor type. It also returns in the
locations pointed to by die_offset, and cu_offset, the offsets of the DIE
representing the user-defined type, and the DIE representing the compilation-unit
containing the user-defined type, respectively. It returns DW_DLV_ERROR on error. It
never returns DW_DLV_NO_ENTRY. On a successful return from
dwarf_pubtype_name_offsets() the storage pointed to by returned_name
should be freed using dwarf_dealloc(), with the allocation type DW_DLA_STRING
when no longer of interest.

6.16.4 Accelerated Access Weaknames

This section is SGI specific and is not part of standard DWARF.

These functions operate on the .debug_varnames section of the debugging information.
The .debug_varnames section contains the names of file-scope static variables, the offsets
of the DIEs that represent the definitions of those variables, and the offsets of the
compilation-units that contain the definitions of those variables.

These operations operate on the .debug_weaknames section of the debugging
information.

Rev 3.17 7 November 2020 - 131 -

- 132 -

6.16.4.1 dwarf_get_weaks()

int dwarf_get_weaks(
Dwarf_Debug dbg,
Dwarf_Weak **weaks,
Dwarf_Signed *weak_count,
Dwarf_Error *error)

The function dwarf_get_weaks() returns DW_DLV_OK and sets *weak_count to
the count of weak names represented in the section containing weak names i.e.
.debug_weaknames. It returns DW_DLV_ERROR on error. It returns
DW_DLV_NO_ENTRY if the section does not exist. It also stores in *weaks, a pointer to
a list of Dwarf_Weak descriptors, one for each of the weak names in the
.debug_weaknames section. The returned results are for the entire section.

On a successful return from this function, the Dwarf_Weak descriptors should be freed
using dwarf_weaks_dealloc() when the data is no longer of interest.
dwarf_weaks_dealloc()is new as of July 15, 2005.

Figure 25. Exampleh dwarf_get_weaks()

void exampleh(Dwarf_Debug dbg)
{

Dwarf_Error error = 0;
Dwarf_Signed count = 0;
Dwarf_Weak *weaks = 0;
Dwarf_Signed i = 0;
int res = 0;

res = dwarf_get_weaks(dbg, &weaks, &count, &error);
if (res == DW_DLV_OK) {

for (i = 0; i < count; ++i) {
/* use weaks[i] */

}
dwarf_weaks_dealloc(dbg, weaks, count);

}
}

The following code is deprecated as of July 15, 2005 as it does not free all relevant
memory. This approach still works as well as it ever did. On a successful return from
dwarf_get_weaks() the Dwarf_Weak descriptors should be individually freed
using dwarf_dealloc() with the allocation type DW_DLA_WEAK_CONTEXT, (or
DW_DLA_WEAK, an older name, supported for compatibility) followed by the
deallocation of the list itself with the allocation type DW_DLA_LIST when the

Rev 3.17 7 November 2020 - 132 -

- 133 -

descriptors are no longer of interest.

Figure 26. Examplei dwarf_get_weaks() obsolete

void examplei(Dwarf_Debug dbg)
{

Dwarf_Error error = 0;
Dwarf_Signed count = 0;
Dwarf_Weak *weaks = 0;
Dwarf_Signed i = 0;
int res = 0;

/* Obsolete, see exampleh instead */
res = dwarf_get_weaks(dbg, &weaks, &count, &error);
if (res == DW_DLV_OK) {

/* OBSOLETE: do not use dealloc for this.
See above */

for (i = 0; i < count; ++i) {
/* use weaks[i] */
dwarf_dealloc(dbg, weaks[i], DW_DLA_WEAK);

}
dwarf_dealloc(dbg, weaks, DW_DLA_LIST);

}
}

6.16.4.2 dwarf_weakname()

int dwarf_weakname(
Dwarf_Weak weak,
char ** return_name,
Dwarf_Error *error)

The function dwarf_weakname() returns DW_DLV_OK and sets *return_name to
a pointer to a null-terminated string that names the weak name represented by the
Dwarf_Weak descriptor, weak. It returns DW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY. On a successful return from this function, the string should be
freed using dwarf_dealloc(), with the allocation type DW_DLA_STRING when no
longer of interest.

int dwarf_weak_die_offset(
Dwarf_Weak weak,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_weak_die_offset() returns DW_DLV_OK and sets
*return_offset to the offset in the section containing DIEs, i.e. .debug_info, of the

Rev 3.17 7 November 2020 - 133 -

- 134 -

DIE representing the weak name that is described by the Dwarf_Weak descriptor,
weak. It returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

6.16.4.3 dwarf_weak_cu_offset()

int dwarf_weak_cu_offset(
Dwarf_Weak weak,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_weak_cu_offset() returns DW_DLV_OK and sets
*return_offset to the offset in the section containing DIEs, i.e. .debug_info, of the
compilation-unit header of the compilation-unit that contains the weak name described by
the Dwarf_Weak descriptor, weak. It returns DW_DLV_ERROR on error. It nev er
returns DW_DLV_NO_ENTRY.

6.16.4.4 dwarf_weak_name_offsets()

int dwarf_weak_name_offsets(
Dwarf_Weak weak,
char ** weak_name,
Dwarf_Off *die_offset,
Dwarf_Off *cu_offset,
Dwarf_Error *error)

The function dwarf_weak_name_offsets() returns DW_DLV_OK and sets
*weak_name to a pointer to a null-terminated string that gives the name of the weak
name described by the Dwarf_Weak descriptor weak. It also returns in the locations
pointed to by die_offset, and cu_offset, the offsets of the DIE representing the
weakname, and the DIE representing the compilation-unit containing the weakname,
respectively. It returns DW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY. On a successful return from
dwarf_weak_name_offsets() the storage pointed to by weak_name should be
freed using dwarf_dealloc(), with the allocation type DW_DLA_STRING when no
longer of interest.

6.16.5 Accelerated Access Funcnames

This section is SGI specific and is not part of standard DWARF.

These function operate on the .debug_funcnames section of the debugging information.
The .debug_funcnames section contains the names of static functions defined in the
object, the offsets of the DIEs that represent the definitions of the corresponding
functions, and the offsets of the start of the compilation-units that contain the definitions
of those functions.

Rev 3.17 7 November 2020 - 134 -

- 135 -

6.16.5.1 dwarf_get_funcs()

int dwarf_get_funcs(
Dwarf_Debug dbg,
Dwarf_Func **funcs,
Dwarf_Signed *func_count,
Dwarf_Error *error)

The function dwarf_get_funcs() returns DW_DLV_OK and sets *func_count to
the count of static function names represented in the section containing static function
names, i.e. .debug_funcnames. It also stores, at *funcs, a pointer to a list of
Dwarf_Func descriptors, one for each of the static functions in the .debug_funcnames
section. The returned results are for the entire section. It returns DW_DLV_ERROR on
error. It returns DW_DLV_NO_ENTRY if the .debug_funcnames section does not exist.

On a successful return from dwarf_get_funcs(), the Dwarf_Func descriptors
should be freed using dwarf_funcs_dealloc(). dwarf_funcs_dealloc() is
new as of July 15, 2005.

Figure 27. Examplej dwarf_get_funcs()

void examplej(Dwarf_Debug dbg)
{

Dwarf_Error error = 0;
Dwarf_Signed count = 0;
Dwarf_Func *funcs = 0;
Dwarf_Signed i = 0;
int fres = 0;

fres = dwarf_get_funcs(dbg, &funcs, &count, &error);
if (fres == DW_DLV_OK) {

for (i = 0; i < count; ++i) {
/* use funcs[i] */

}
dwarf_funcs_dealloc(dbg, funcs, count);

}
}

The following code is deprecated as of July 15, 2005 as it does not free all relevant
memory. This approach still works as well as it ever did. On a successful return from
dwarf_get_funcs(), the Dwarf_Func descriptors should be individually freed
using dwarf_dealloc() with the allocation type DW_DLA_FUNC_CONTEXT, (or
DW_DLA_FUNC, an older name, supported for compatibility) followed by the
deallocation of the list itself with the allocation type DW_DLA_LIST when the
descriptors are no longer of interest.

Rev 3.17 7 November 2020 - 135 -

- 136 -

Figure 28. Examplek dwarf_get_funcs() obsolete

void examplek(Dwarf_Debug dbg)
{

Dwarf_Error error = 0;
Dwarf_Func *funcs = 0;
Dwarf_Signed count = 0;
Dwarf_Signed i = 0;
int fres = 0;

fres = dwarf_get_funcs(dbg, &funcs,&count, &error);
if (fres == DW_DLV_OK) {

/* OBSOLETE: see dwarf_funcs_dealloc() above */
for (i = 0; i < count; ++i) {

/* use funcs[i] */
dwarf_dealloc(dbg, funcs[i], DW_DLA_FUNC);

}
dwarf_dealloc(dbg, funcs, DW_DLA_LIST);

}
}

6.16.5.2 dwarf_funcname()

int dwarf_funcname(
Dwarf_Func func,
char ** return_name,
Dwarf_Error *error)

The function dwarf_funcname() returns DW_DLV_OK and sets *return_name to
a pointer to a null-terminated string that names the static function represented by the
Dwarf_Func descriptor, func. It returns DW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY. On a successful return from this function, the string should be
freed using dwarf_dealloc(), with the allocation type DW_DLA_STRING when no
longer of interest.

6.16.5.3 dwarf_func_die_offset()

int dwarf_func_die_offset(
Dwarf_Func func,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_func_die_offset(), returns DW_DLV_OK and sets
*return_offset to the offset in the section containing DIEs, i.e. .debug_info, of the
DIE representing the static function that is described by the Dwarf_Func descriptor,
func. It returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

Rev 3.17 7 November 2020 - 136 -

- 137 -

6.16.5.4 dwarf_func_cu_offset()

int dwarf_func_cu_offset(
Dwarf_Func func,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_func_cu_offset() returns DW_DLV_OK and sets
*return_offset to the offset in the section containing DIEs, i.e. .debug_info, of the
compilation-unit header of the compilation-unit that contains the static function described
by the Dwarf_Func descriptor, func. It returns DW_DLV_ERROR on error. It nev er
returns DW_DLV_NO_ENTRY.

6.16.5.5 dwarf_func_name_offsets()

int dwarf_func_name_offsets(
Dwarf_Func func,
char **func_name,
Dwarf_Off *die_offset,

Dwarf_Off *cu_offset,
Dwarf_Error *error)

The function dwarf_func_name_offsets() returns DW_DLV_OK and sets
*func_name to a pointer to a null-terminated string that gives the name of the static
function described by the Dwarf_Func descriptor func. It also returns in the locations
pointed to by die_offset, and cu_offset, the offsets of the DIE representing the
static function, and the DIE representing the compilation-unit containing the static
function, respectively. It returns DW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY. On a successful return from
dwarf_func_name_offsets() the storage pointed to by func_name should be
freed using dwarf_dealloc(), with the allocation type DW_DLA_STRING when no
longer of interest.

6.16.6 Accelerated Access Typenames

Section "debug_typenames" is SGI specific and is not part of standard DWARF.
(However, an identical section is part of DWARF version 3 named ".debug_pubtypes",
see dwarf_get_pubtypes() above.)

These functions operate on the .debug_typenames section of the debugging information.
The .debug_typenames section contains the names of file-scope user-defined types, the
offsets of the DIEs that represent the definitions of those types, and the offsets of the
compilation-units that contain the definitions of those types.

6.16.6.1 dwarf_get_types()

Rev 3.17 7 November 2020 - 137 -

- 138 -

int dwarf_get_types(
Dwarf_Debug dbg,
Dwarf_Type **types,
Dwarf_Signed *typecount,
Dwarf_Error *error)

The function dwarf_get_types() returns DW_DLV_OK and sets *typecount to
the count of user-defined type names represented in the section containing user-defined
type names, i.e. .debug_typenames. It also stores at *types, a pointer to a list of
Dwarf_Type descriptors, one for each of the user-defined type names in the
.debug_typenames section. The returned results are for the entire section. It returns
DW_DLV_NOCOUNT on error. It returns DW_DLV_NO_ENTRY if the .debug_typenames
section does not exist.

On a successful return from dwarf_get_types(), the Dwarf_Type descriptors
should be freed using dwarf_types_dealloc(). dwarf_types_dealloc() is
new as of July 15, 2005 and frees all memory allocated by dwarf_get_types().

Figure 29. Examplel dwarf_get_types()

void examplel(Dwarf_Debug dbg)
{

Dwarf_Error error = 0;
Dwarf_Signed count = 0;
Dwarf_Type *types = 0;
Dwarf_Signed i = 0;
int res = 0;

res = dwarf_get_types(dbg, &types,&count, &error);
if (res == DW_DLV_OK) {

for (i = 0; i < count; ++i) {
/* use types[i] */

}
dwarf_types_dealloc(dbg, types, count);

}
}

The following code is deprecated as of July 15, 2005 as it does not free all relevant
memory. This approach still works as well as it ever did. On a successful return from
dwarf_get_types(), the Dwarf_Type descriptors should be individually freed
using dwarf_dealloc() with the allocation type DW_DLA_TYPENAME_CONTEXT,
(or DW_DLA_TYPENAME, an older name, supported for compatibility) followed by the

Rev 3.17 7 November 2020 - 138 -

- 139 -

deallocation of the list itself with the allocation type DW_DLA_LIST when the
descriptors are no longer of interest.

Figure 30. Examplel dwarf_get_types() obsolete

void examplem(Dwarf_Debug dbg)
{

Dwarf_Error error = 0;
Dwarf_Signed count = 0;
Dwarf_Type *types = 0;
Dwarf_Signed i = 0;
int res = 0;

/* OBSOLETE: see dwarf_types_dealloc() above */
res = dwarf_get_types(dbg, &types,&count, &error);
if (res == DW_DLV_OK) {

for (i = 0; i < count; ++i) {
/* use types[i] */
dwarf_dealloc(dbg, types[i], DW_DLA_TYPENAME);

}
dwarf_dealloc(dbg, types, DW_DLA_LIST);

}
}

6.16.6.2 dwarf_typename()

int dwarf_typename(
Dwarf_Type type,
char **return_name,
Dwarf_Error *error)

The function dwarf_typename() returns DW_DLV_OK and sets *return_name to
a pointer to a null-terminated string that names the user-defined type represented by the
Dwarf_Type descriptor, type. It returns DW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY. On a successful return from this function, the string should be
freed using dwarf_dealloc(), with the allocation type DW_DLA_STRING when no
longer of interest.

6.16.6.3 dwarf_type_die_offset()

int dwarf_type_die_offset(
Dwarf_Type type,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_type_die_offset() returns DW_DLV_OK and sets
*return_offset to the offset in the section containing DIEs, i.e. .debug_info, of the

Rev 3.17 7 November 2020 - 139 -

- 140 -

DIE representing the user-defined type that is described by the Dwarf_Type descriptor,
type. It returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

6.16.6.4 dwarf_type_cu_offset()

int dwarf_type_cu_offset(
Dwarf_Type type,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The function dwarf_type_cu_offset() returns DW_DLV_OK and sets
*return_offset to the offset in the section containing DIEs, i.e. .debug_info, of the
compilation-unit header of the compilation-unit that contains the user-defined type
described by the Dwarf_Type descriptor, type. It returns DW_DLV_ERROR on error.
It never returns DW_DLV_NO_ENTRY.

6.16.6.5 dwarf_type_name_offsets()

int dwarf_type_name_offsets(
Dwarf_Type type,
char ** returned_name,
Dwarf_Off * die_offset,
Dwarf_Off * cu_offset,
Dwarf_Error *error)

The function dwarf_type_name_offsets() returns DW_DLV_OK and sets
*returned_name to a pointer to a null-terminated string that gives the name of the
user-defined type described by the Dwarf_Type descriptor type. It also returns in the
locations pointed to by die_offset, and cu_offset, the offsets of the DIE
representing the user-defined type, and the DIE representing the compilation-unit
containing the user-defined type, respectively. It returns DW_DLV_ERROR on error. It
never returns DW_DLV_NO_ENTRY. On a successful return from
dwarf_type_name_offsets() the storage pointed to by returned_name
should be freed using dwarf_dealloc(), with the allocation type DW_DLA_STRING
when no longer of interest.

6.16.7 Accelerated Access varnames

This section is SGI specific and is not part of standard DWARF.

These functions operate on the .debug_varnames section of the debugging information.
The .debug_varnames section contains the names of file-scope static variables, the offsets
of the DIEs that represent the definitions of those variables, and the offsets of the
compilation-units that contain the definitions of those variables.

Rev 3.17 7 November 2020 - 140 -

- 141 -

6.16.7.1 dwarf_get_vars()

int dwarf_get_vars(
Dwarf_Debug dbg,
Dwarf_Var **vars,
Dwarf_Signed *var_count,
Dwarf_Error *error)

The function dwarf_get_vars() returns DW_DLV_OK and sets *var_count to the
count of file-scope static variable names represented in the section containing file-scope
static variable names, i.e. .debug_varnames. It also stores, at *vars, a pointer to a list of
Dwarf_Var descriptors, one for each of the file-scope static variable names in the
.debug_varnames section. The returned results are for the entire section. It returns
DW_DLV_ERROR on error. It returns DW_DLV_NO_ENTRY if the .debug_varnames
section does not exist.

The following is new as of July 15, 2005. On a successful return from
dwarf_get_vars(), the Dwarf_Var descriptors should be freed using
dwarf_vars_dealloc().

Figure 31. Examplen dwarf_get_vars()

void examplen(Dwarf_Debug dbg)
{

Dwarf_Error error = 0;
Dwarf_Signed count = 0;
Dwarf_Var *vars = 0;
Dwarf_Signed i = 0;
int res = 0;
res = dwarf_get_vars(dbg, &vars,&count,&error);
if (res == DW_DLV_OK) {

for (i = 0; i < count; ++i) {
/* use vars[i] */

}
dwarf_vars_dealloc(dbg, vars, count);

}
}

The following code is deprecated as of July 15, 2005 as it does not free all relevant
memory. This approach still works as well as it ever did. On a successful return from
dwarf_get_vars(), the Dwarf_Var descriptors should be individually freed using
dwarf_dealloc() with the allocation type DW_DLA_VAR_CONTEXT, (or
DW_DLA_VAR, an older name, supported for compatibility) followed by the deallocation
of the list itself with the allocation type DW_DLA_LIST when the descriptors are no
longer of interest.

Rev 3.17 7 November 2020 - 141 -

- 142 -

Figure 32. Exampleo dwarf_get_vars() obsolete

void exampleo(Dwarf_Debug dbg)
{

Dwarf_Error error = 0;
Dwarf_Signed count = 0;
Dwarf_Var *vars = 0;
Dwarf_Signed i = 0;
int res = 0;
res = dwarf_get_vars(dbg, &vars,&count,&error);
if (res == DW_DLV_OK) {

/* DO NOT USE: see dwarf_vars_dealloc() above */
for (i = 0; i < count; ++i) {

/* use vars[i] */
dwarf_dealloc(dbg, vars[i], DW_DLA_VAR);

}
dwarf_dealloc(dbg, vars, DW_DLA_LIST);

}
}

6.16.7.2 dwarf_varname()

int dwarf_varname(
Dwarf_Var var,
char ** returned_name,
Dwarf_Error *error)

The function dwarf_varname() returns DW_DLV_OK and sets *returned_name
to a pointer to a null-terminated string that names the file-scope static variable
represented by the Dwarf_Var descriptor, var. It returns DW_DLV_ERROR on error.
It never returns DW_DLV_NO_ENTRY. On a successful return from this function, the
string should be freed using dwarf_dealloc(), with the allocation type
DW_DLA_STRING when no longer of interest.

6.16.7.3 dwarf_var_die_offset()

int dwarf_var_die_offset(
Dwarf_Var var,
Dwarf_Off *returned_offset,
Dwarf_Error *error)

The function dwarf_var_die_offset() returns DW_DLV_OK and sets
*returned_offset to the offset in the section containing DIEs, i.e. .debug_info, of
the DIE representing the file-scope static variable that is described by the Dwarf_Var
descriptor, var. It returns DW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY.

Rev 3.17 7 November 2020 - 142 -

- 143 -

6.16.7.4 dwarf_var_cu_offset()

int dwarf_var_cu_offset(
Dwarf_Var var,
Dwarf_Off *returned_offset,
Dwarf_Error *error)

The function dwarf_var_cu_offset() returns DW_DLV_OK and sets
*returned_offset to the offset in the section containing DIEs, i.e. .debug_info, of
the compilation-unit header of the compilation-unit that contains the file-scope static
variable described by the Dwarf_Var descriptor, var. It returns DW_DLV_ERROR on
error. It nev er returns DW_DLV_NO_ENTRY.

6.16.7.5 dwarf_var_name_offsets()

int dwarf_var_name_offsets(
Dwarf_Var var,
char **returned_name,
Dwarf_Off *die_offset,
Dwarf_Off *cu_offset,
Dwarf_Error *error)

The function dwarf_var_name_offsets() returns DW_DLV_OK and sets
*returned_name to a pointer to a null-terminated string that gives the name of the
file-scope static variable described by the Dwarf_Var descriptor var. It also returns in
the locations pointed to by die_offset, and cu_offset, the offsets of the DIE
representing the

representing the compilation-unit containing the file-scope static variable, respectively. It
returns DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY. On a
successful return from dwarf_var_name_offsets() the storage pointed to by
returned_name should be freed using dwarf_dealloc(), with the allocation type
DW_DLA_STRING when no longer of interest.

6.17 Names Fast Access (DWARF5) .debug_names

The section .debug_names section is new in DWARF5 so a new set of functions is
defined to access this section. This section replaces .debug_pubnames and
.debug_pubtypes as those older sections were not found to be useful in practice.
See also Names Fast Access .debug_gnu_pubnames

6.17.1 dwarf_debugnames_header()

int dwarf_debugnames_header(
Dwarf_Debug dbg,
Dwarf_Dnames_Head * dn_out,
Dwarf_Unsigned * dn_index_count_out,
Dwarf_Error *error)

Rev 3.17 7 November 2020 - 143 -

- 144 -

The function dwarf_debugnames_header() allocates an opaque data structure
used in all the other debugnames calls.

Many of the function calls here let one extract the entire content of the section, which is
useful if one wishes to dump the section or to use its data to create one’s own internal
data structures.

To free space allocated when one has finished with these data structures, call

Debug_Dnames_Head dn /* Assume set somehow */;
...
dwarf_dealloc(dbg,dn,DW_DLA_DNAMES_HEAD);

which will free up all data allocated for dwarf_debugnames_header().

On success the function returns DW_DLV_OK and returns a pointer to the Head structure
through dn_out.

It also returns the count of debugnames entry in the debugnames index through the
dn_index_count_out value.

It returns DW_DLV_NO_ENTRY if there is no .debug_names section.

It returns DW_DLV_ERROR if there is an internal error such as data corruption in the
section.

6.17.2 dwarf_debugnames_sizes()

Rev 3.17 7 November 2020 - 144 -

- 145 -

int dwarf_debugnames_sizes(Dwarf_Dnames_Head dn,
Dwarf_Unsigned index_number,

Dwarf_Unsigned * section_offsets,
Dwarf_Unsigned * version,
Dwarf_Unsigned * offset_size,

/* The counts are entry counts, not byte sizes. */
Dwarf_Unsigned * comp_unit_count,
Dwarf_Unsigned * local_type_unit_count,
Dwarf_Unsigned * foreign_type_unit_count,
Dwarf_Unsigned * bucket_count,
Dwarf_Unsigned * name_count,

/* The following are counted in bytes */
Dwarf_Unsigned * indextable_overall_length,
Dwarf_Unsigned * abbrev_table_size,
Dwarf_Unsigned * entry_pool_size,
Dwarf_Unsigned * augmentation_string_size,

Dwarf_Error * error*/)

Given a properly created head dn this Allows access to fields a .debug_names
DWARF5 header record index_number.

We will not describe the fields in detail here. See the DWARF5 standard and
dwarfdump for the motivation of this function.

6.17.3 dwarf_debugnames_cu_entry()

int dwarf_debugnames_cu_entry(
Dwarf_Dnames_Head dn,
Dwarf_Unsigned index_number,
Dwarf_Unsigned offset_number,
Dwarf_Unsigned * offset_count,
Dwarf_Unsigned * offset,
Dwarf_Error * error)

Given a properly created head dn this Allows access to fields in cu entry
index_number from a .debug_names DWARF5 Compilation Unit entry.

We will not describe the fields in detail here. See the DWARF5 standard and
dwarfdump for the motivation of this function.

6.17.4 dwarf_debugnames_local_tu_entry()

Rev 3.17 7 November 2020 - 145 -

- 146 -

int dwarf_debugnames_local_tu_entry(
Dwarf_Dnames_Head dn,
Dwarf_Unsigned index_number,
Dwarf_Unsigned offset_number,
Dwarf_Unsigned * offset_count,
Dwarf_Unsigned * offset,
Dwarf_Error * error)

The same as dwarf_debugnames_cu_entry() but referencing type unit fields.

6.17.5 dwarf_debugnames_foreign_tu_entry()

int dwarf_debugnames_foreign_tu_entry(
Dwarf_Dnames_Head dn,
Dwarf_Unsigned index_number,
Dwarf_Unsigned sig_number,
Dwarf_Unsigned * sig_minimum,
Dwarf_Unsigned * sig_count,
Dwarf_Sig8 * signature,
Dwarf_Error * error)

Allows retrieving the data for foreign type-unit entries.

6.17.6 dwarf_debugnames_bucket()

int dwarf_debugnames_bucket(
Dwarf_Dnames_Head dn,
Dwarf_Unsigned index_number,
Dwarf_Unsigned bucket_number,
Dwarf_Unsigned * bucket_count,
Dwarf_Unsigned * index_of_name_entry,
Dwarf_Error * error)

Allows retrieving the data for hash buckets.

6.17.7 dwarf_debugnames_name()

int dwarf_debugnames_bucket(
Dwarf_Dnames_Head dn,
Dwarf_Unsigned index_number,
Dwarf_Unsigned name_entry,
Dwarf_Unsigned * names_count,
Dwarf_Sig8 * signature,
Dwarf_Unsigned * offset_to_debug_str,
Dwarf_Unsigned * offset_in_entrypool,
Dwarf_Error * error)

Allows retrieving the data about names and signatures.

Rev 3.17 7 November 2020 - 146 -

- 147 -

6.17.8 dwarf_debugnames_abbrev_by_index()"

int dwarf_debugnames_abbrev_by_index(
Dwarf_Dnames_Head dn,
Dwarf_Unsigned index_number,
Dwarf_Unsigned abbrev_entry,
Dwarf_Unsigned * abbrev_code,
Dwarf_Unsigned * tag,
Dwarf_Unsigned * number_of_abbrev,
Dwarf_Unsigned * number_of_attr_form_entries,
Dwarf_Error * error)

Allows retrieving the abbreviations from a portion of the section by index.

6.17.9 dwarf_debugnames_abbrev_by_code()

int dwarf_debugnames_abbrev_by_code(
Dwarf_Dnames_Head dn,
Dwarf_Unsigned index_number,
Dwarf_Unsigned abbrev_code,
Dwarf_Unsigned * tag,
Dwarf_Unsigned * index_of_abbrev,
Dwarf_Unsigned * index_of_attr_form_entries,
Dwarf_Error * error)

Allows retrieving the abbreviations from a portion of the section by abbrev-code.

6.17.10 dwarf_debugnames_form_by_index()

int dwarf_debugnames_form_by_index(
Dwarf_Dnames_Head dn,
Dwarf_Unsigned index_number,
Dwarf_Unsigned abbrev_entry_index,
Dwarf_Unsigned abbrev_form_index,
Dwarf_Unsigned * name_attr_index,
Dwarf_Unsigned * form,
Dwarf_Unsigned * number_of_attr_form_entries,
Dwarf_Error * error)

Allows retrieving the abbreviations forms from a portion of the section by index.

6.17.11 dwarf_debugnames_entrypool()

Rev 3.17 7 November 2020 - 147 -

- 148 -

int dwarf_debugnames_entrypool(
Dwarf_Dnames_Head dn,
Dwarf_Unsigned index_number,
Dwarf_Unsigned offset_in_entrypool,
Dwarf_Unsigned * abbrev_code,
Dwarf_Unsigned * tag,
Dwarf_Unsigned * value_count,
Dwarf_Unsigned * index_of_abbrev,
Dwarf_Unsigned * offset_of_initial_value,
Dwarf_Error * error)

Allows retrieving the data from a portion of the entrypool by index and offset.

6.17.12 dwarf_debugnames_entrypool_values()

int dwarf_debugnames_entrypool_values(
Dwarf_Dnames_Head dn,
Dwarf_Unsigned index_number,
Dwarf_Unsigned index_of_abbrev,
Dwarf_Unsigned offset_in_entrypool_of_values,
Dwarf_Unsigned * array_dw_idx_number,
Dwarf_Unsigned * array_form,
Dwarf_Unsigned * array_of_offsets,
Dwarf_Sig8 * array_of_signatures,
Dwarf_Error * error)

Allows retrieving detailed data from a portion of the entrypool by index and offset.

6.18 Names Fast Access .debug_gnu_pubnames

The sections .debug_gnu_pubnames and .debug_gnu_pubtypes are non-
standard sections emitted by gcc and clang with DWARF5. Typically they will be in the
skeleton executable and the split dwarf section .debug_info.dwo will have the actual
DWARF the offsets refer to, These sections would normally be read once by a program
wanting them and filed in an internal format and then the program would do the cleanup
dwarf_gnu_index_dealloc().

Each section is divided into what we term blocks here and within each block there is an
array of entries. The functions below enable access.

6.18.1 dwarf_get_gnu_index_head()

Rev 3.17 7 November 2020 - 148 -

- 149 -

int dwarf_get_gnu_index_head(
Dwarf_Debug dbg,
/* The following arg false to select gnu_pubtypes */
Dwarf_Bool for_gdb_pubnames ,
Dwarf_Gnu_Index_Head * head,
Dwarf_Unsigned * index_block_count,
Dwarf_Error * error);

This creates an open header to use in subsequent data access. Free the memory
associated with this by calling dwarf_gnu_index_dealloc(head).

The field index_block_count is set through the pointer to the number of blocks in
the section. Call dwarf_get_gnu_index_block() and pass in valid block number
(zero thrugh index_block_count-1) to get block information.

If the section does not exist or is empty it returns DW_DLV_NO_ENTRY and does nothing
else.

If there is data corruption or some serious error it returns DW_DLV_ERROR and sets the
error pointer with information about the error.

6.18.2 dwarf_gnu_index_dealloc()

void dwarf_gnu_index_dealloc(
Dwarf_Gnu_Index_Head index_head);

This frees all data associated with the section.

6.18.3 dwarf_get_gnu_index_block()

int dwarf_get_gnu_index_block(
Dwarf_Gnu_Index_Head head,
Dwarf_Unsigned blocknumber,
Dwarf_Unsigned * block_length,
Dwarf_Half * version ,
Dwarf_Unsigned * offset_into_debug_info,
Dwarf_Unsigned * size_of_debug_info_area,
Dwarf_Unsigned * count_of_index_entries,
Dwarf_Error * error);

On success this returns DW_DLV_OK and fills in the various fields through the pointers.
If the pointer to a field is null the function ignores that field.

The field block_length has the byte length of the block (with its entries).

Rev 3.17 7 November 2020 - 149 -

- 150 -

The field version has the version number. Currently it must be 2.

The field offsetinto_debug_info is the offset (in some .debug_info or
.debug_info.owo section) of a Compilation Unit Header.

The field size_of_debug_info_area is the size of the referenced compilation unit.

The field count_of_index_entries is the number of entries attached to the block.
See dwarf_get_gnu_index_block_entry().

If the block number is outside the valid range (zero through index_block_count -1)
it returns DW_DLV_NO_ENTRY and does nothing.

If there is data corruption or some serious error it returns DW_DLV_ERROR and sets the
error pointer with information about the error.

6.18.4 dwarf_get_gnu_index_block_entry()

int dwarf_get_gnu_index_block_entry(
Dwarf_Gnu_Index_Head head,
Dwarf_Unsigned blocknumber,
Dwarf_Unsigned entrynumber,
Dwarf_Unsigned * offset_in_debug_info
const char ** name,
unsigned char * flagbyte,
unsigned char * staticorglobal,
unsigned char * typeofentry,
Dwarf_Error * error);

If either blocknumber or entrynumber is outside the range of valid values it returns
DW_DLV_NO_ENTRY and does nothing.

On success it returns DW_DLV_OK and sets information about each entry through the
pointers. Any pointers pased in as NULL are ignored.

The field offset_in_debug_info has the offset of DIE in a .debug_info section.

The field name has a pointer to the name of the variable or function that the DIE refers
to.

The field flagbyte has the entire 8 bits of a byte that has two useful fields. The next
two fields are those useful fields.

The field staticorglobal has an integer 0 if the DIE involved describes a global
(externally-visble) name. It has an integer 1 if the name refers to a static (file-local) DIE.

Rev 3.17 7 November 2020 - 150 -

- 151 -

The field typeofentry has a small integer describing the type. Zero means the type is
"none". One means the type is "type". Tw o means the type is "variable". Three means
the type is "function". Four means the type is "other". Any other value has, apparently,
no assigned meaning.

If there is data corruption or some serious error it returns DW_DLV_ERROR and sets the
error pointer with information about the error.

6.19 Macro Information Operations (DWARF4, DWARF5)

This section refers to DWARF4 and later macro information from the .debug_macro
section (for DWARF 4 some producers generated .debug_macro before its formal
standardization in DWARF 5). While standard operations are supported there is as yet no
support for implementation-defined extensions. Once someone has defined such things it
will make sense to design an interface for extensions.

6.19.1 Getting access

The opaque struct pointer Dwarf_Macro_Context is allocated by either
dwarf_get_macro_context() or
dwarf_get_macro_context_by_offset() and once the context is no longer
needed one frees up all its storage by dwarf_dealloc_macro_context().

6.19.1.1 dwarf_get_macro_context()

int dwarf_get_macro_context(Dwarf_Die die,
Dwarf_Unsigned * version_out,
Dwarf_Macro_Context * macro_context,
Dwarf_Unsigned * macro_unit_offset_out,
Dwarf_Unsigned * macro_ops_count_out,
Dwarf_Unsigned * macro_ops_data_length_out,
Dwarf_Error * error);

Given a Compilation Unit (CU) die, on success dwarf_get_macro_context()
opens a Dwarf_Macro_Context and returns a pointer to it and some data from the
macro unit for that CU. The Dwarf_Macro_Context is used to get at the details of
the macros.

The value version_out is set to the DWARF version number of the macro data.
Version 5 means DWARF5 version information. Version 4 means the DWARF5 format
macro data is present as an extension of DWARF4.

The value macro_unit_offset_out is set to the offset in the .debug_macro section
of the first byte of macro data for this CU.

The value macro_ops_count_out is set to the number of macro entries in the macro
data data for this CU. The count includes the final zero entry (which is not really a
macro, it is a terminator, a zero byte ending the macro unit).

Rev 3.17 7 November 2020 - 151 -

- 152 -

The value macro_ops_data_length_out is set to the number of bytes of data in
the macro unit, including the macro unit header.

If DW_DLV_NO_ENTRY is returned the CU has no macro data attribute or there is no
.debug_macro section present.

On error DW_DLV_ERROR is returned and the error details are returned through the
pointer error.

6.19.1.2 dwarf_get_macro_context_by_offset()

int dwarf_get_macro_context_by_offset(Dwarf_Die die,
Dwarf_Unsigned offset,
Dwarf_Unsigned * version_out,
Dwarf_Macro_Context * macro_context,
Dwarf_Unsigned * macro_ops_count_out,
Dwarf_Unsigned * macro_ops_total_byte_len,
Dwarf_Error * error);

Given a Compilation Unit (CU) die and the offset of an imported macro unit
dwarf_get_macro_context_by_offset() opens a Dwarf_Macro_Context
and returns a pointer to it and some data from the macro unit for that CU on success.

On success the function produces the same output values as
dwarf_get_macro_context() except there is no offset returned (the caller
provides it).

If DW_DLV_NO_ENTRY is returned there is no .debug_macro section present.

On error DW_DLV_ERROR is returned and the error details are returned through the
pointer error.

6.19.1.3 dwarf_dealloc_macro_context()

void dwarf_dealloc_macro_context(Dwarf_Macro_Context macro_context);

The function dwarf_dealloc_macro_context() cleans up memory allocated by
a successful call to dwarf_get_macro_context() or
dwarf_get_macro_context_by_offset().

Figure 33. Examplep5 dwarf_dealloc_macro_context()

Rev 3.17 7 November 2020 - 152 -

- 153 -

/* This builds an list or some other data structure
(not defined) to give an import somewhere to list
the import offset and then later to enquire
if the list has unexamined offsets.
A candidate set of hypothetical functions that
callers would write:
has_unchecked_import_in_list()
get_next_import_from_list()
mark_this_offset_as_examined(macro_unit_offset);
add_offset_to_list(offset);

*/
void examplep5(Dwarf_Debug dbg, Dwarf_Die cu_die)
{

int lres = 0;
Dwarf_Unsigned version = 0;
Dwarf_Macro_Context macro_context = 0;
Dwarf_Unsigned macro_unit_offset = 0;
Dwarf_Unsigned number_of_ops = 0;
Dwarf_Unsigned ops_total_byte_len = 0;
Dwarf_Bool is_primary = TRUE;
unsigned k = 0;
Dwarf_Error err = 0;

for(;;) {
if (is_primary) {

lres = dwarf_get_macro_context(cu_die,
&version,¯o_context,
¯o_unit_offset,
&number_of_ops,
&ops_total_byte_len,
&err);

is_primary = FALSE;
} else {

if (has_unchecked_import_in_list()) {
macro_unit_offset = get_next_import_from_list();

} else {
/* We are done */
break;

}
lres = dwarf_get_macro_context_by_offset(cu_die,

macro_unit_offset,
&version,
¯o_context,
&number_of_ops,
&ops_total_byte_len,
&err);

Rev 3.17 7 November 2020 - 153 -

- 154 -

mark_this_offset_as_examined(macro_unit_offset);
}

if (lres == DW_DLV_ERROR) {
/* Something is wrong. */
return;

}
if (lres == DW_DLV_NO_ENTRY) {

/* We are done. */
break;

}
/* lres == DW_DLV_OK) */
for (k = 0; k < number_of_ops; ++k) {

Dwarf_Unsigned section_offset = 0;
Dwarf_Half macro_operator = 0;
Dwarf_Half forms_count = 0;
const Dwarf_Small *formcode_array = 0;
Dwarf_Unsigned line_number = 0;
Dwarf_Unsigned index = 0;
Dwarf_Unsigned offset =0;
const char * macro_string =0;
int lres = 0;

lres = dwarf_get_macro_op(macro_context,
k, §ion_offset,¯o_operator,
&forms_count, &formcode_array,&err);

if (lres != DW_DLV_OK) {
print_error(dbg,

"ERROR from dwarf_get_macro_op()",
lres,err);

dwarf_dealloc_macro_context(macro_context);
return;

}
switch(macro_operator) {
case 0:

/* Nothing to do. This
sigifies it is the end-marker,
standing in for the 0 byte
at the end of his macro group. */

break;
case DW_MACRO_end_file:

/* Do something */
break;

case DW_MACRO_define:
case DW_MACRO_undef:
case DW_MACRO_define_strp:

Rev 3.17 7 November 2020 - 154 -

- 155 -

case DW_MACRO_undef_strp:
case DW_MACRO_define_strx:
case DW_MACRO_undef_strx:
case DW_MACRO_define_sup:
case DW_MACRO_undef_sup: {

lres = dwarf_get_macro_defundef(macro_context,
k,
&line_number,
&index,
&offset,
&forms_count,
¯o_string,
&err);

if (lres != DW_DLV_OK) {
print_error(dbg,

"ERROR from sup dwarf_get_macro_defundef()",
lres,err);

dwarf_dealloc_macro_context(macro_context);
return;

}
/* do something */
}
break;

case DW_MACRO_start_file: {
lres = dwarf_get_macro_startend_file(macro_context,

k,&line_number,
&index,
¯o_string,&err);

if (lres != DW_DLV_OK) {
print_error(dbg,

"ERROR from dwarf_get_macro_startend_file()(sup)",
lres,err);

dwarf_dealloc_macro_context(macro_context);
return;

}
/* do something */
}
break;

case DW_MACRO_import: {
lres = dwarf_get_macro_import(macro_context,

k,&offset,&err);
if (lres != DW_DLV_OK) {

print_error(dbg,
"ERROR from dwarf_get_macro_import()(sup)",
lres,err);

dwarf_dealloc_macro_context(macro_context);

Rev 3.17 7 November 2020 - 155 -

- 156 -

return;
}
add_offset_to_list(offset);
}
break;

case DW_MACRO_import_sup: {
lres = dwarf_get_macro_import(macro_context,

k,&offset,&err);
if (lres != DW_DLV_OK) {

print_error(dbg,
"ERROR from dwarf_get_macro_import()(sup)",
lres,err);

dwarf_dealloc_macro_context(macro_context);
return;

}
/* do something */
}
break;

}
}
dwarf_dealloc_macro_context(macro_context);
macro_context = 0;

}
}

6.19.2 Getting Macro Unit Header Data

6.19.2.1 dwarf_macro_context_head()

int dwarf_macro_context_head(Dwarf_Macro_Context macro_context,
Dwarf_Half * version,
Dwarf_Unsigned * mac_offset,
Dwarf_Unsigned * mac_len,
Dwarf_Unsigned * mac_header_len,
unsigned * flags,
Dwarf_Bool * has_line_offset,
Dwarf_Unsigned * line_offset,
Dwarf_Bool * has_offset_size_64,
Dwarf_Bool * has_operands_table,
Dwarf_Half * opcode_count,
Dwarf_Error * error);

Given a Dwarf_Macro_Context pointer this function returns the basic fields of a
macro unit header (Macro Information Header) on success.

The value version is set to the DWARF version number of the macro unit header.

Rev 3.17 7 November 2020 - 156 -

- 157 -

Version 5 means DWARF5 version information. Version 4 means the DWARF5 format
macro data is present as an extension of DWARF4.

The value mac_offset is set to the offset in the .debug_macro section of the first byte
of macro data for this CU.

The value mac_len is set to the number of bytes of data in the macro unit, including the
macro unit header.

The value mac_header_len is set to the number of bytes in the macro unit header (not
a field that is generally useful).

The value flags is set to the value of the flags field of the macro unit header.

The value has_line_offset is set to non-zero if the
debug_line_offset_flag bit is set in the flags field of the macro unit header. If
has_line_offset is set then line_offset is set to the value of the
debug_line_offset field in the macro unit header. If has_line_offset is not
set there is no debug_line_offset field present in the macro unit header.

The value has_offset_size_64 is set non-zero if the offset_size_flag bit is
set in the flags field of the macro unit header and in this case offset fields in this macro
unit are 64 bits. If has_offset_size_64 is not set then offset fields in this macro
unit are 32 bits.

The value has_operands_table is set to non-zero if the
opcod_operands_table_flag bit is set in the flags field of the macro unit
header.

If has_operands_table is set non-zero then The value opcode_count is set to
the number of opcodes in the macro unit header opcode_operands_table. See
dwarf_get_macro_op().

DW_DLV_NO_ENTRY is not returned.

On error DW_DLV_ERROR is returned and the error details are returned through the
pointer error.

6.19.2.2 dwarf_macro_operands_table()

int dwarf_macro_operands_table(Dwarf_Macro_Context macro_context,
Dwarf_Half index, /* 0 to opcode_count -1 */
Dwarf_Half * opcode_number,
Dwarf_Half * operand_count,
const Dwarf_Small ** operand_array,
Dwarf_Error * error);

dwarf_macro_operands_table() is used to index through the operands table in a
macro unit header if the operands table exists in the macro unit header. The operands
table provides the mechanism for implementations to add extensions to the macro
operations while allowing clients to skip macro operations the client code does not
recognize.

Rev 3.17 7 November 2020 - 157 -

- 158 -

The macro_context field passed in identifies the macro unit involved. The index
field passed in identifies which macro operand to look at. Valid index values are zero
through the opcode_count-1 (returned by dwarf_macro_context_head()).

The opcode_number value returned through the pointer is the the macro operation
code. The operation code could be one of the standard codes or if there are user
extensions there would be an extension code in the DW_MACRO_lo_user to
DW_MACRO_hi_user range.

The operand_count returned is the number of form codes in the form codes array of
unsigned bytes operand_array.

DW_DLV_NO_ENTRY is not returned.

On error DW_DLV_ERROR is returned and the error details are returned through the
pointer error.

6.19.3 Getting Individual Macro Operations Data

6.19.3.1 dwarf_get_macro_op()

int dwarf_get_macro_op(Dwarf_Macro_Context macro_context,
Dwarf_Unsigned op_number,
Dwarf_Unsigned * op_start_section_offset,
Dwarf_Half * macro_operator,
Dwarf_Half * forms_count,
const Dwarf_Small ** formcode_array,
Dwarf_Error * error);

Use dwarf_get_macro_op() to access the macro operations of this macro unit.

The macro_context field passed in identifies the macro unit involved. The
op_number field passed in identifies which macro operand to look at. Valid index
values are zero through macro_ops_count_out-1 (field returned by
dwarf_get_macro_context() or
dwarf_get_macro_context_by_offset())

On success the function returns values through the pointers.

If macro_operator returned is zero that means this is a placeholder for the null byte
at the end of this array of macros. The other pointer values returned are also zero in this
case.

The op_start_section_offset returned is useful for debugging but otherwise is
not normally useful. It is the byte offset of the beginning of this macro operator’s data.

The macro_operator returned is one of the defined macro operations such as
DW_MACRO_define. This is the field you will use to choose what call to use to get the
data for a macro operator. For example, for DW_MACRO_undef one would call
dwarf_get_macro_defundef() (see below) to get the details about the undefine.

Rev 3.17 7 November 2020 - 158 -

- 159 -

The forms_count returned is useful for debugging but otherwise is not normally
useful. It is the number of bytes of form numbers in the formcode_array of this
macro operator’s applicable forms.

DW_DLV_NO_ENTRY is not returned.

On error DW_DLV_ERROR is returned and the error details are returned through the
pointer error.

6.19.3.2 dwarf_get_macro_defundef()

int dwarf_get_macro_defundef(Dwarf_Macro_Context macro_context,
Dwarf_Unsigned op_number,
Dwarf_Unsigned * line_number,
Dwarf_Unsigned * index,
Dwarf_Unsigned * offset,
Dwarf_Half * forms_count,
const char ** macro_string,
Dwarf_Error * error);

Call dwarf_get_macro_defundef for any of the macro define/undefine operators.
Which fields are set through the pointers depends on the particular operator.

The macro_context field passed in identifies the macro unit involved. The
op_number field passed in identifies which macro operand to look at. Valid index
values are zero through macro_ops_count_out-1 (field returned by
dwarf_get_macro_context() or
dwarf_get_macro_context_by_offset()).

The line_number field is set with the source line number of the macro.

The index field only set meaningfully if the macro operator is
DW_MACRO_define_strx or DW_MACRO_undef_strx. If set it is an index into an
array of offsets in the .debug_str_offsets section.

The offset field only set meaningfully if the macro operator is
DW_MACRO_define_strx, DW_MACRO_undef_strx
DW_MACRO_define_strp, or DW_MACRO_undef_strp If set it is an offset of a
string in the .debug_str section.

The forms_count is set to the number of forms that apply to the macro operator.

The macro_string pointer is used to return a pointer to the macro string. If the actual
string cannot be found (as when section with the string is in a different object, see
set_tied_dbg()) the string returned may be "<:No string available>" or
"<.debug_str_offsets not available>" (without the quotes).

The function returns DW_DLV_NO_ENTRY if the macro operation is not one of the
define/undef operations.

On error DW_DLV_ERROR is returned and the error details are returned through the

Rev 3.17 7 November 2020 - 159 -

- 160 -

pointer error.

6.19.3.3 dwarf_get_macro_startend_file()

int dwarf_get_macro_startend_file(Dwarf_Macro_Context macro_context,
Dwarf_Unsigned op_number,
Dwarf_Unsigned * line_number,
Dwarf_Unsigned * name_index_to_line_tab,
const char ** src_file_name,
Dwarf_Error * error);

Call dwarf_get_macro_startend_file for operators
DW_MACRO_start_file or DW_MACRO_end_file.

The macro_context field passed in identifies the macro unit involved.

The op_number field passed in identifies which macro operand to look at. Valid index
values are zero through macro_ops_count_out-1 (field returned by
dwarf_get_macro_context() or
dwarf_get_macro_context_by_offset())

For DW_MACRO_end_file none of the following fields are set on successful return,
they are only set for. DW_MACRO_start_file

The line_number field is set with the source line number of the macro.

The name_index_to_line_tab field is set with the index into the file name table of
the line table section. For DWARF2, DWARF3, DWARF4 line tables the index value
assumes DWARF2 line table header rules (identical to DWARF3, DWARF4 line table
header rules). For DWARF5 the index value assumes DWARF5 line table header rules.
The src_file_name is set with the source file name. If the index seems wrong or the
line table is unavailable the name returned is "<no-source-file-name-available>");

The function returns DW_DLV_NO_ENTRY if the macro operation is not one of the
start/end operations.

On error DW_DLV_ERROR is returned and the error details are returned through the
pointer error.

6.19.3.4 dwarf_get_macro_import()

int dwarf_get_macro_import(Dwarf_Macro_Context macro_context,
Dwarf_Unsigned op_number,
Dwarf_Unsigned * target_offset,
Dwarf_Error * error);

Call dwarf_get_macro_import for operators DW_MACRO_import or
DW_MACRO_import_sup.

The macro_context field passed in identifies the macro unit involved. The
op_number field passed in identifies which macro operand to look at. Valid index
values are zero through macro_ops_count_out-1 (field returned by

Rev 3.17 7 November 2020 - 160 -

- 161 -

dwarf_get_macro_context() or
dwarf_get_macro_context_by_offset())

On success the target_offset field is set to the offset in the referenced section. For
DW_MACRO_import the referenced section is the same section as the macro operation
referenced here. For DW_MACRO_import_sup the referenced section is in a
supplementary object.

The function returns DW_DLV_NO_ENTRY if the macro operation is not one of the
import operations.

On error DW_DLV_ERROR is returned and the error details are returned through the
pointer error.

6.20 Macro Information Operations (DWARF2, DWARF3, DWARF4)

This section refers to DWARF2,DWARF3,and DWARF4 macro information from the
.debug_macinfo section. These do not apply to DWARF5 macro data.

6.20.1 General Macro Operations

6.20.1.1 dwarf_find_macro_value_start()

char *dwarf_find_macro_value_start(char * macro_string);

Given a macro string in the standard form defined in the DWARF document ("name
<space> value" or "name(args)<space>value") this returns a pointer to the first byte of the
macro value. It does not alter the string pointed to by macro_string or copy the string: it
returns a pointer into the string whose address was passed in.

6.20.2 Debugger Interface Macro Operations

Macro information is accessed from the .debug_info section via the DW_AT_macro_info
attribute (whose value is an offset into .debug_macinfo).

No Functions yet defined.

6.20.3 Low Lev el Macro Information Operations

6.20.3.1 dwarf_get_macro_details()

int dwarf_get_macro_details(Dwarf_Debug /*dbg*/,
Dwarf_Off macro_offset,
Dwarf_Unsigned maximum_count,
Dwarf_Signed * entry_count,
Dwarf_Macro_Details ** details,
Dwarf_Error * err);

dwarf_get_macro_details() returns DW_DLV_OK and sets entry_count to
the number of details records returned through the details pointer. The data
returned through details should be freed by a call to dwarf_dealloc() with the
allocation type DW_DLA_STRING. If DW_DLV_OK is returned, the entry_count will

Rev 3.17 7 November 2020 - 161 -

- 162 -

be at least 1, since a compilation unit with macro information but no macros will have at
least one macro data byte of 0.

dwarf_get_macro_details() begins at the macro_offset offset you supply
and ends at the end of a compilation unit or at maximum_count detail records
(whichever comes first). If maximum_count is 0, it is treated as if it were the
maximum possible unsigned integer.

dwarf_get_macro_details() attempts to set dmd_fileindex to the correct
file in every details record. If it is unable to do so (or whenever the current file index
is unknown, it sets dmd_fileindex to -1.

dwarf_get_macro_details() returns DW_DLV_ERROR on error. It returns
DW_DLV_NO_ENTRY if there is no more macro information at that macro_offset. If
macro_offset is passed in as 0, a DW_DLV_NO_ENTRY return means there is no
macro information.

Figure 34. Examplep2 dwarf_get_macro_details()

Rev 3.17 7 November 2020 - 162 -

- 163 -

void examplep2(Dwarf_Debug dbg, Dwarf_Off cur_off)
{

Dwarf_Error error = 0;
Dwarf_Signed count = 0;
Dwarf_Macro_Details *maclist = 0;
Dwarf_Signed i = 0;
Dwarf_Unsigned max = 500000; /* sanity limit */
int errv = 0;

/* Given an offset from a compilation unit,
start at that offset (from DW_AT_macroinfo)
and get its macro details. */

errv = dwarf_get_macro_details(dbg, cur_off,max,
&count,&maclist,&error);

if (errv == DW_DLV_OK) {
for (i = 0; i < count; ++i) {

Dwarf_Macro_Details * mentry = maclist +i;
/* example of use */
Dwarf_Signed lineno = mentry->dmd_lineno;
functionusingsigned(lineno);

}
dwarf_dealloc(dbg, maclist, DW_DLA_STRING);

}
/* Loop through all the compilation units macro info from zero.

This is not guaranteed to work because DWARF does not
guarantee every byte in the section is meaningful:
there can be garbage between the macro info
for CUs. But this loop will sometimes work.

*/
cur_off = 0;
while((errv = dwarf_get_macro_details(dbg, cur_off,max,

&count,&maclist,&error))== DW_DLV_OK) {
for (i = 0; i < count; ++i) {

Dwarf_Macro_Details * mentry = maclist +i;
/* example of use */
Dwarf_Signed lineno = mentry->dmd_lineno;
functionusingsigned(lineno);

}
cur_off = maclist[count-1].dmd_offset + 1;
dwarf_dealloc(dbg, maclist, DW_DLA_STRING);

}
}

Rev 3.17 7 November 2020 - 163 -

- 164 -

6.21 Low Lev el Frame Operations

These functions provide information about stack frames to be used to perform stack
traces. The information is an abstraction of a table with a row per instruction and a
column per register and a column for the canonical frame address (CFA, which
corresponds to the notion of a frame pointer), as well as a column for the return address.

From 1993-2006 the interface we’ll here refer to as DWARF2 made the CFA be a column
in the matrix, but left DW_FRAME_UNDEFINED_VAL, and
DW_FRAME_SAME_VAL out of the matrix (giving them high numbers). As of the
DWARF3 interfaces introduced in this document in April 2006, there are *two*
interfaces (the original set and a new set). Several frame functions work transparently for
either set, we will focus on the ones that are not equally suitable now.

The original DWARF2 interface set still exists (dwarf_get_fde_info_for_reg(),
dwarf_get_fde_info_for_cfa_reg(), and dwarf_get_fde_info_for_all_regs()) and works
adequately for MIPS/IRIX DWARF2 and ABI/ISA sets that are sufficiently similar to
MIPS. These functions not a good choice for non-MIPS architectures nor were they a
good design for MIPS either. It’s better to switch entirely to the new functions mentioned
in the next paragraph. This DWARF2 interface set assumes and uses
DW_FRAME_CFA_COL and that is assumed when libdwarf is configured with --enable-
oldframecol .

A new DWARF3 interface set of dwarf_get_fde_info_for_reg3(),
dwarf_get_fde_info_for_cfa_reg3(), dwarf_get_fde_info_for_all_regs3(),
dwarf_set_frame_rule_table_size() dwarf_set_frame_cfa_value(),
dwarf_set_frame_same_value(), dwarf_set_frame_undefined_value(), and
dwarf_set_frame_rule_initial_value() is more flexible and will work for many more
architectures. It is also entirely suitable for use with DWARF2 and DWARF4. The
setting of the ’frame cfa column number’ defaults to DW_FRAME_CFA_COL3 and it
can be set at runtime with dwarf_set_frame_cfa_value().

Mixing use of the DWARF2 interface set with use of the new DWARF3 interface set on a
single open Dwarf_Debug instance is a mistake. Do not do it.

We will pretend, from here on unless otherwise specified, that
DW_FRAME_CFA_COL3, DW_FRAME_UNDEFINED_VAL, and
DW_FRAME_SAME_VAL are the synthetic column numbers. These columns may be
user-chosen by calls of dwarf_set_frame_cfa_value()
dwarf_set_frame_undefined_value(), and dwarf_set_frame_same_value() respectively.

Each cell in the table contains one of the following:

1. A register + offset(a)(b)

2. A register(c)(d)

Rev 3.17 7 November 2020 - 164 -

- 165 -

3. A marker (DW_FRAME_UNDEFINED_VAL) meaning register value undefined

4. A marker (DW_FRAME_SAME_VAL) meaning register value same as in caller

(a old DWARF2 interface) When the column is DW_FRAME_CFA_COL: the register
number is a real hardware register, not a reference to DW_FRAME_CFA_COL, not
DW_FRAME_UNDEFINED_VAL, and not DW_FRAME_SAME_VAL. The CFA rule
value should be the stack pointer plus offset 0 when no other value makes sense. A value
of DW_FRAME_SAME_VAL would be semi-logical, but since the CFA is not a real
register, not really correct. A value of DW_FRAME_UNDEFINED_VAL would imply
the CFA is undefined -- this seems to be a useless notion, as the CFA is a means to
finding real registers, so those real registers should be marked
DW_FRAME_UNDEFINED_VAL, and the CFA column content (whatever register it
specifies) becomes unreferenced by anything.

(a new April 2006 DWARF2/3 interface): The CFA is separately accessible and not part
of the table. The ’rule number’ for the CFA is a number outside the table. So the CFA is
a marker, not a register number. See DW_FRAME_CFA_COL3 in libdwarf.h and
dwarf_get_fde_info_for_cfa_reg3() and dwarf_set_frame_rule_cfa_value().

(b) When the column is not DW_FRAME_CFA_COL3, the ’register’ will and must be
DW_FRAME_CFA_COL3(COL), implying that to get the final location for the column
one must add the offset here plus the DW_FRAME_CFA_COL3 rule value.

(c) When the column is DW_FRAME_CFA_COL3, then the ’register’ number is (must
be) a real hardware register . (This paragraph does not apply to the April 2006 new
interface). If it were DW_FRAME_UNDEFINED_VAL or DW_FRAME_SAME_VAL
it would be a marker, not a register number.

(d) When the column is not DW_FRAME_CFA_COL3, the register may be a hardware
register. It will not be DW_FRAME_CFA_COL3.

There is no ’column’ for DW_FRAME_UNDEFINED_VAL or
DW_FRAME_SAME_VAL. Nor for DW_FRAME_CFA_COL3.

Figure 8 is machine dependent and represents MIPS CPU register assignments. The
DW_FRAME_CFA_COL define in dwarf.h is historical and really belongs in libdwarf.h,
not dwarf.h.

Rev 3.17 7 November 2020 - 165 -

- 166 -

NAME value PURPOSE

DW_FRAME_CFA_COL 0 column used for CFA
DW_FRAME_REG1 1 integer register 1
DW_FRAME_REG2 2 integer register 2
--- obvious names and values here
DW_FRAME_REG30 30 integer register 30
DW_FRAME_REG31 31 integer register 31
DW_FRAME_FREG0 32 floating point register 0
DW_FRAME_FREG1 33 floating point register 1
--- obvious names and values here
DW_FRAME_FREG30 62 floating point register 30
DW_FRAME_FREG31 63 floating point register 31
DW_FRAME_RA_COL 64 column recording ra
DW_FRAME_UNDEFINED_VAL 1034 register val undefined
DW_FRAME_SAME_VAL 1035 register same as in caller

Figure 35. Frame Information Rule Assignments MIPS

The following table shows SGI/MIPS specific special cell values: these values mean that
the cell has the value undefined or same value respectively, rather than containing a
register or register+offset. It assumes DW_FRAME_CFA_COL is a table rule, which is
not readily accomplished or even sensible for some architectures.

NAME value PURPOSE

DW_FRAME_UNDEFINED_VAL 1034 means undefined value.
Not a column or register value

DW_FRAME_SAME_VAL 1035 means ’same value’ as
caller had. Not a column or
register value

DW_FRAME_CFA_COL 0 means register zero is
usurped by the CFA column.

Figure 36. Frame Information Special Values any architecture

The following table shows more general special cell values. These values mean that the
cell register-number refers to the cfa-register or undefined-value or same-value

respectively, rather than referring to a register in the table. The generality arises from
making DW_FRAME_CFA_COL3 be outside the set of registers and making the cfa rule
accessible from outside the rule-table.

Rev 3.17 7 November 2020 - 166 -

- 167 -

NAME value PURPOSE

DW_FRAME_UNDEFINED_VAL 1034 means undefined
value. Not a column or register value

DW_FRAME_SAME_VAL 1035 means ’same value’ as
caller had. Not a column or
register value

DW_FRAME_CFA_COL3 1436 means ’cfa register’
is referred to, not a real register, not
a column, but the cfa (the cfa does have
a value, but in the DWARF3 libdwarf interface
it does not have a ’real register number’).

6.21.1 dwarf_get_frame_section_name()

int dwarf_get_frame_section_name(Dwarf_Debug dbg,
const char ** sec_name,
Dwarf_Error *error)

dwarf_get_string_section_name() lets consumers access the object string
section name. This is useful for applications wanting to print the name, but of course the
object section name is not really a part of the DWARF information. Most applications
will probably not call this function. It can be called at any time after the Dwarf_Debug
initialization is done. See also dwarf_get_frame_section_name_eh_gnu().

The function dwarf_get_frame_section_name() operates on the the
.debug_frame section.

If the function succeeds, *sec_name is set to a pointer to a string with the object
section name and the function returns DW_DLV_OK. Do not free the string whose pointer
is returned. For non-Elf objects it is possible the string pointer returned will be NULL or
will point to an empty string. It is up to the calling application to recognize this
possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

If there is an internal error detected the function returns DW_DLV_ERROR and sets the
*error pointer.

6.21.2 dwarf_get_frame_section_name_eh_gnu()

int dwarf_get_frame_section_name_eh_gnu(Dwarf_Debug dbg
const char ** sec_name,
Dwarf_Error *error)

dwarf_get_frame_section_name_eh_gnu() lets consumers access the object
string section name. This is useful for applications wanting to print the name, but of
course the object section name is not really a part of the DWARF information. Most
applications will probably not call this function. It can be called at any time after the

Rev 3.17 7 November 2020 - 167 -

- 168 -

Dwarf_Debug initialization is done. See also
dwarf_get_frame_section_name().

The function dwarf_get_frame_section_name_eh_ghu() operates on the the
.eh_frame section.

If the function succeeds, *sec_name is set to a pointer to a string with the object
section name and the function returns DW_DLV_OK. Do not free the string whose pointer
is returned. For non-Elf objects it is possible the string pointer returned will be NULL or
will point to an empty string. It is up to the calling application to recognize this
possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

If there is an internal error detected the function returns DW_DLV_ERROR and sets the
*error pointer.

6.21.3 dwarf_get_fde_list()

int dwarf_get_fde_list(
Dwarf_Debug dbg,
Dwarf_Cie **cie_data,
Dwarf_Signed *cie_element_count,
Dwarf_Fde **fde_data,
Dwarf_Signed *fde_element_count,
Dwarf_Error *error);

dwarf_get_fde_list() stores a pointer to a list of Dwarf_Cie descriptors in
*cie_data, and the count of the number of descriptors in *cie_element_count.
There is a descriptor for each CIE in the .debug_frame section. Similarly, it stores a
pointer to a list of Dwarf_Fde descriptors in *fde_data, and the count of the number
of descriptors in *fde_element_count. There is one descriptor per FDE in the
.debug_frame section. dwarf_get_fde_list() returns DW_DLV_ERROR on error.
It returns DW_DLV_NO_ENTRY if it cannot find frame entries. It returns DW_DLV_OK
on a successful return.

On successful return, structures pointed to by a descriptor should be freed using
dwarf_fde_cie_list_dealloc(). This dealloc approach is new as of July 15,
2005.

Figure 37. Exampleq dwarf_get_fde_list()

Rev 3.17 7 November 2020 - 168 -

- 169 -

void exampleq(Dwarf_Debug dbg)
{

Dwarf_Cie *cie_data = 0;
Dwarf_Signed cie_count = 0;
Dwarf_Fde *fde_data = 0;
Dwarf_Signed fde_count = 0;
Dwarf_Error error = 0;
int fres = 0;

fres = dwarf_get_fde_list(dbg,&cie_data,&cie_count,
&fde_data,&fde_count,&error);

if (fres == DW_DLV_OK) {
dwarf_fde_cie_list_dealloc(dbg, cie_data, cie_count,

fde_data,fde_count);
}

}

The following code is deprecated as of July 15, 2005 as it does not free all relevant
memory. This approach still works as well as it ever did.

Figure 38. Exampleqb dwarf_get_fde_list() obsolete

Rev 3.17 7 November 2020 - 169 -

- 170 -

/* OBSOLETE EXAMPLE */
void exampleqb(Dwarf_Debug dbg)
{

Dwarf_Cie *cie_data = 0;
Dwarf_Signed cie_count = 0;
Dwarf_Fde *fde_data = 0;
Dwarf_Signed fde_count = 0;
Dwarf_Error error = 0;
Dwarf_Signed i = 0;
int fres = 0;

fres = dwarf_get_fde_list(dbg,&cie_data,&cie_count,
&fde_data,&fde_count,&error);

if (fres == DW_DLV_OK) {
for (i = 0; i < cie_count; ++i) {

/* use cie[i] */
dwarf_dealloc(dbg, cie_data[i], DW_DLA_CIE);

}
for (i = 0; i < fde_count; ++i) {

/* use fde[i] */
dwarf_dealloc(dbg, fde_data[i], DW_DLA_FDE);

}
dwarf_dealloc(dbg, cie_data, DW_DLA_LIST);
dwarf_dealloc(dbg, fde_data, DW_DLA_LIST);

}
}

6.21.4 dwarf_get_fde_list_eh()

int dwarf_get_fde_list_eh(
Dwarf_Debug dbg,
Dwarf_Cie **cie_data,
Dwarf_Signed *cie_element_count,
Dwarf_Fde **fde_data,
Dwarf_Signed *fde_element_count,
Dwarf_Error *error);

dwarf_get_fde_list_eh() is identical to dwarf_get_fde_list() except
that dwarf_get_fde_list_eh() reads the GNU gcc section named .eh_frame
(C++ exception handling information).

dwarf_get_fde_list_eh() stores a pointer to a list of Dwarf_Cie descriptors in
*cie_data, and the count of the number of descriptors in *cie_element_count.
There is a descriptor for each CIE in the .debug_frame section. Similarly, it stores a
pointer to a list of Dwarf_Fde descriptors in *fde_data, and the count of the number
of descriptors in *fde_element_count. There is one descriptor per FDE in the

Rev 3.17 7 November 2020 - 170 -

- 171 -

.debug_frame section. dwarf_get_fde_list() returns DW_DLV_ERROR on error.
It returns DW_DLV_NO_ENTRY if it cannot find exception handling entries. It returns
DW_DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should be freed using
dwarf_fde_cie_list_dealloc(). This dealloc approach is new as of July 15,
2005.

Figure 39. Exampler dwarf_get_fde_list_eh()

Rev 3.17 7 November 2020 - 171 -

- 172 -

void exampler(Dwarf_Debug dbg,Dwarf_Addr mypcval)
{

/* Given a pc value
for a function find the FDE and CIE data for
the function.
Example shows basic access to FDE/CIE plus
one way to access details given a PC value.
dwarf_get_fde_n() allows accessing all FDE/CIE
data so one could build up an application-specific
table of information if that is more useful. */

Dwarf_Signed count = 0;
Dwarf_Cie *cie_data = 0;
Dwarf_Signed cie_count = 0;
Dwarf_Fde *fde_data = 0;
Dwarf_Signed fde_count = 0;
Dwarf_Error error = 0;
int fres = 0;

fres = dwarf_get_fde_list_eh(dbg,&cie_data,&cie_count,
&fde_data,&fde_count,&error);

if (fres == DW_DLV_OK) {
Dwarf_Fde myfde = 0;
Dwarf_Addr low_pc = 0;
Dwarf_Addr high_pc = 0;
fres = dwarf_get_fde_at_pc(fde_data,mypcval,

&myfde,&low_pc,&high_pc,
&error);

if (fres == DW_DLV_OK) {
Dwarf_Cie mycie = 0;
fres = dwarf_get_cie_of_fde(myfde,&mycie,&error);
if (fres == DW_DLV_OK) {

/* Now we can access a range of information
about the fde and cie applicable. */

}
}
dwarf_fde_cie_list_dealloc(dbg, cie_data, cie_count,

fde_data,fde_count);
}
/* ERROR or NO ENTRY. Do something */

}

6.21.5 dwarf_get_cie_of_fde()

Rev 3.17 7 November 2020 - 172 -

- 173 -

int dwarf_get_cie_of_fde(Dwarf_Fde fde,
Dwarf_Cie *cie_returned,
Dwarf_Error *error);

dwarf_get_cie_of_fde() stores a Dwarf_Cie into the Dwarf_Cie that
cie_returned points at.

If one has called dwarf_get_fde_list() must avoid dwarf_dealloc-ing the FDEs
and the CIEs for those FDEs individually (see its documentation here). Failing to
observe this restriction will cause the FDE(s) not dealloc’d to become invalid: an FDE
contains (hidden in it) a CIE pointer which will be be invalid (stale, pointing to freed
memory) if the CIE is dealloc’d. The invalid CIE pointer internal to the FDE cannot be
detected as invalid by libdwarf. If one later passes an FDE with a stale internal CIE
pointer to one of the routines taking an FDE as input the result will be failure of the call
(returning DW_DLV_ERROR) at best and it is possible a coredump or worse will happen
(eventually).

dwarf_get_cie_of_fde() returns DW_DLV_OK if it is successful (it will be unless
fde is the NULL pointer). It returns DW_DLV_ERROR if the fde is invalid (NULL).

Each Dwarf_Fde descriptor describes information about the frame for a particular
subroutine or function.

int dwarf_get_fde_for_die is SGI/MIPS specific.

6.21.6 dwarf_get_fde_for_die()

int dwarf_get_fde_for_die(
Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Fde * return_fde,
Dwarf_Error *error)

When it succeeds, dwarf_get_fde_for_die() returns DW_DLV_OK and sets
*return_fde to a Dwarf_Fde descriptor representing frame information for the
given die. It looks for the DW_AT_MIPS_fde attribute in the given die. If it finds it,
is uses the value of the attribute as the offset in the .debug_frame section where the FDE
begins. If there is no DW_AT_MIPS_fde it returns DW_DLV_NO_ENTRY. If there is an
error it returns DW_DLV_ERROR.

6.21.7 dwarf_get_fde_range()

Rev 3.17 7 November 2020 - 173 -

- 174 -

int dwarf_get_fde_range(
Dwarf_Fde fde,
Dwarf_Addr *low_pc,
Dwarf_Unsigned *func_length,
Dwarf_Ptr *fde_bytes,
Dwarf_Unsigned *fde_byte_length,
Dwarf_Off *cie_offset,
Dwarf_Signed *cie_index,
Dwarf_Off *fde_offset,
Dwarf_Error *error);

On success, dwarf_get_fde_range() returns DW_DLV_OK.

The location pointed to by low_pc is set to the low pc value for this function.

The location pointed to by func_length is set to the length of the function in bytes.
This is essentially the length of the text section for the function.

The location pointed to by fde_bytes is set to the address where the FDE begins in the
.debug_frame section.

The location pointed to by fde_byte_length is set to the length in bytes of the
portion of .debug_frame for this FDE. This is the same as the value returned by
dwarf_get_fde_range.

The location pointed to by cie_offset is set to the offset in the .debug_frame section
of the CIE used by this FDE.

The location pointed to by cie_index is set to the index of the CIE used by this FDE.
The index is the index of the CIE in the list pointed to by cie_data as set by the
function dwarf_get_fde_list(). Howev er, if the function
dwarf_get_fde_for_die() was used to obtain the given fde, this index may not
be correct.

The location pointed to by fde_offset is set to the offset of the start of this FDE in
the .debug_frame section.

dwarf_get_fde_range() returns DW_DLV_ERROR on error.

6.21.8 dwarf_get_cie_info()

Rev 3.17 7 November 2020 - 174 -

- 175 -

int dwarf_get_cie_info(
Dwarf_Cie cie,
Dwarf_Unsigned *bytes_in_cie,
Dwarf_Small *version,
char **augmenter,
Dwarf_Unsigned *code_alignment_factor,
Dwarf_Signed *data_alignment_factor,
Dwarf_Half *return_address_register_rule,
Dwarf_Ptr *initial_instructions,
Dwarf_Unsigned *initial_instructions_length,
Dwarf_Error *error);

dwarf_get_cie_info() is primarily for Internal-level Interface consumers. If
successful, it returns DW_DLV_OK and sets *bytes_in_cie to the number of bytes in
the portion of the frames section for the CIE represented by the given Dwarf_Cie
descriptor, cie. The other fields are directly taken from the cie and returned, via the
pointers to the caller. It returns DW_DLV_ERROR on error.

6.21.9 dwarf_get_cie_index()

int dwarf_get_cie_index(
Dwarf_Cie cie,
Dwarf_Signed *cie_index,
Dwarf_Error *error);

On success, dwarf_get_cie_index() returns DW_DLV_OK. On error this function
returns DW_DLV_ERROR.

The location pointed to by cie_index is set to the index of the CIE of this FDE. The
index is the index of the CIE in the list pointed to by cie_data as set by the function
dwarf_get_fde_list().

So one must have used dwarf_get_fde_list() or
dwarf_get_fde_list_eh() to get a cie list before this is meaningful.

This function is occasionally useful, but is little used.

6.21.10 dwarf_get_fde_instr_bytes()

int dwarf_get_fde_instr_bytes(
Dwarf_Fde fde,
Dwarf_Ptr *outinstrs,
Dwarf_Unsigned *outlen,
Dwarf_Error *error);

dwarf_get_fde_instr_bytes() returns DW_DLV_OK and sets *outinstrs to
a pointer to a set of bytes which are the actual frame instructions for this fde. It also sets

Rev 3.17 7 November 2020 - 175 -

- 176 -

*outlen to the length, in bytes, of the frame instructions. It returns DW_DLV_ERROR
on error. It nev er returns DW_DLV_NO_ENTRY. The intent is to allow low-level
consumers like a dwarf-dumper to print the bytes in some fashion. The memory pointed
to by outinstrs must not be changed and there is nothing to free.

6.21.11 dwarf_get_fde_info_for_reg()

This interface is suitable for DWARF2 but is not sufficient for DWARF3. See int
dwarf_get_fde_info_for_reg3.

int dwarf_get_fde_info_for_reg(
Dwarf_Fde fde,
Dwarf_Half table_column,
Dwarf_Addr pc_requested,
Dwarf_Signed *offset_relevant,
Dwarf_Signed *register_num,
Dwarf_Signed *offset,
Dwarf_Addr *row_pc,
Dwarf_Error *error);

dwarf_get_fde_info_for_reg() returns DW_DLV_OK and sets
*offset_relevant to non-zero if the offset is relevant for the row specified by
pc_requested and column specified by table_column, for the FDE specified by
fde. The intent is to return the rule for the given pc value and register. The location
pointed to by register_num is set to the register value for the rule. The location
pointed to by offset is set to the offset value for the rule. If offset is not relevant for
this rule, *offset_relevant is set to zero. Since more than one pc value will have
rows with identical entries, the user may want to know the earliest pc value after which
the rules for all the columns remained unchanged. Recall that in the virtual table that the
frame information represents there may be one or more table rows with identical data
(each such table row at a different pc value). Given a pc_requested which refers to a
pc in such a group of identical rows, the location pointed to by row_pc is set to the
lowest pc value within the group of identical rows. The value put in *register_num
any of the DW_FRAME_* table columns values specified in libdwarf.h or dwarf.h.

dwarf_get_fde_info_for_reg returns DW_DLV_ERROR if there is an error.

It is usable with either dwarf_get_fde_n() or dwarf_get_fde_at_pc().

dwarf_get_fde_info_for_reg() is tailored to MIPS, please use
dwarf_get_fde_info_for_reg3() instead for all architectures.

6.21.12 dwarf_get_fde_info_for_all_regs()

Rev 3.17 7 November 2020 - 176 -

- 177 -

int dwarf_get_fde_info_for_all_regs(
Dwarf_Fde fde,
Dwarf_Addr pc_requested,
Dwarf_Regtable *reg_table,
Dwarf_Addr *row_pc,
Dwarf_Error *error);

dwarf_get_fde_info_for_all_regs() returns DW_DLV_OK and sets
*reg_table for the row specified by pc_requested for the FDE specified by fde.

The intent is to return the rules for decoding all the registers, given a pc value.
reg_table is an array of rules, one for each register specified in dwarf.h. The rule
for each register contains three items - dw_regnum which denotes the register value for
that rule, dw_offset which denotes the offset value for that rule and
dw_offset_relevant which is set to zero if offset is not relevant for that rule. See
dwarf_get_fde_info_for_reg() for a description of row_pc.

dwarf_get_fde_info_for_all_regs returns DW_DLV_ERROR if there is an
error.

int dwarf_get_fde_info_for_all_regs is tailored to SGI/MIPS, please use
dwarf_get_fde_info_for_all_regs3() instead for all architectures.

6.21.13 dwarf_fde_section_offset()

int dwarf_fde_section_offset(
Dwarf_Debug /*dbg*/,
Dwarf_Fde /*in_fde*/,
Dwarf_Off * /*fde_off*/,
Dwarf_Off * /*cie_off*/,
Dwarf_Error *error);

On success dwarf_fde_section_offset() returns the .dwarf_line section offset
of the fde passed in and also the offset of its CIE.

It returns DW_DLV_ERROR if there is an error.

It returns DW_DLV_ERROR if there is an error.

It is intended to be used by applications like dwarfdump when such want to print the
offsets of CIEs and FDEs.

6.21.14 dwarf_cie_section_offset()

Rev 3.17 7 November 2020 - 177 -

- 178 -

int dwarf_cie_section_offset(
Dwarf_Debug /*dbg*/,
Dwarf_Cie /*in_cie*/,
Dwarf_Off * /*cie_off*/,
Dwarf_Error * /*err*/);
Dwarf_Error *error);

On success dwarf_cie_section_offset() returns the .dwarf_line section offset
of the cie passed in.

It returns DW_DLV_ERROR if there is an error.

It is intended to be used by applications like dwarfdump when such want to print the
offsets of CIEs.

6.21.15 dwarf_set_frame_rule_table_size()

This allows consumers to set the size of the (internal to libdwarf) rule table when using
the ’reg3’ interfaces (these interfaces are strongly preferred over the older ’reg’
interfaces). It should be at least as large as the number of real registers in the ABI which
is to be read in for the dwarf_get_fde_info_for_reg3() or
dwarf_get_fde_info_for_all_regs3() functions to work properly.

The frame rule table size must be less than the marker values
DW_FRAME_UNDEFINED_VAL, DW_FRAME_SAME_VAL,
DW_FRAME_CFA_COL3 (dwarf_set_frame_rule_undefined_value()
dwarf_set_frame_same_value() dwarf_set_frame_cfa_value() effectively set these
markers so the frame rule table size can actually be any value regardless of the macro
values in libdwarf.h as long as the table size does not overlap these markers).

Dwarf_Half
dwarf_set_frame_rule_table_size(Dwarf_Debug dbg,

Dwarf_Half value);

dwarf_set_frame_rule_table_size() sets the value value as the size of
libdwarf-internal rules tables of dbg.

The function returns the previous value of the rules table size setting (taken from the dbg
structure).

6.21.16 dwarf_set_frame_rule_initial_value()

This allows consumers to set the initial value for rows in the frame tables. By default it is
taken from libdwarf.h and is DW_FRAME_REG_INITIAL_VALUE (which itself is
either DW_FRAME_SAME_VAL or DW_FRAME_UNDEFINED_VAL). The
MIPS/IRIX default is DW_FRAME_SAME_VAL. Consumer code should set this

Rev 3.17 7 November 2020 - 178 -

- 179 -

appropriately and for many architectures (but probably not MIPS)
DW_FRAME_UNDEFINED_VAL is an appropriate setting. Note: an earlier spelling of
dwarf_set_frame_rule_inital_value() is still supported as an interface, but please change
to use the new correctly spelled name.

Dwarf_Half
dwarf_set_frame_rule_initial_value(Dwarf_Debug dbg,

Dwarf_Half value);

dwarf_set_frame_rule_initial_value() sets the value value as the initial
value for this dbg when initializing rules tables.

The function returns the previous value of initial value (taken from the dbg structure).

6.21.17 dwarf_set_frame_cfa_value()

This allows consumers to set the number of the CFA register for rows in the frame tables.
By default it is taken from libdwarf.h and is DW_FRAME_CFA_COL. Consumer code
should set this appropriately and for nearly all architectures DW_FRAME_CFA_COL3 is
an appropriate setting.

Dwarf_Half
dwarf_set_frame_rule_cfa_value(Dwarf_Debug dbg,

Dwarf_Half value);

dwarf_set_frame_rule_cfa_value() sets the value value as the number of
the cfa ’register rule’ for this dbg when initializing rules tables.

The function returns the previous value of the pseudo-register (taken from the dbg
structure).

6.21.18 dwarf_set_frame_same_value()

This allows consumers to set the number of the pseudo-register when
DW_CFA_same_value is the operation. By default it is taken from libdwarf.h and is
DW_FRAME_SAME_VAL. Consumer code should set this appropriately, though for many
architectures DW_FRAME_SAME_VAL is an appropriate setting.

Dwarf_Half
dwarf_set_frame_rule_same_value(Dwarf_Debug dbg,

Dwarf_Half value);

dwarf_set_frame_rule_same_value() sets the value value as the number of
the register that is the pseudo-register set by the DW_CFA_same_value frame operation.

The function returns the previous value of the pseudo-register (taken from the dbg
structure).

Rev 3.17 7 November 2020 - 179 -

- 180 -

6.21.19 dwarf_set_frame_undefined_value()

This allows consumers to set the number of the pseudo-register
when DW_CFA_undefined_value is the operation. By default it is taken from libdwarf.h
and is DW_FRAME_UNDEFINED_VAL. Consumer code should set this appropriately,
though for many architectures DW_FRAME_UNDEFINED_VAL is an appropriate setting.

Dwarf_Half
dwarf_set_frame_rule_undefined_value(Dwarf_Debug dbg,

Dwarf_Half value);

dwarf_set_frame_rule_undefined_value() sets the value value as the
number of the register that is the pseudo-register set by the DW_CFA_undefined_value
frame operation.

The function returns the previous value of the pseudo-register (taken from the dbg
structure).

6.21.20 dwarf_set_default_address_size()

This allows consumers to set a default address size. When one has an object where the
default address_size does not match the frame address size where there is no debug_info
available to get a frame-specific address-size, this function is useful. For example, if an
Elf64 object has a .debug_frame whose real address_size is 4 (32 bits). This a very rare
situation.

Dwarf_Small
dwarf_set_default_address_size(Dwarf_Debug dbg,

Dwarf_Small value);

dwarf_set_default_address_size() sets the value value as the default
address size for this activation of the reader, but only if value is greater than zero
(otherwise the default address size is not changed).

The function returns the previous value of the default address size (taken from the dbg
structure).

6.21.21 dwarf_get_fde_info_for_reg3()

This interface is suitable for DWARF2 and later. It returns the values for a particular real
register (Not for the CFA virtual register, see dwarf_get_fde_info_for_cfa_reg3() below).
If the application is going to retrieve the value for more than a few table_column
values at this pc_requested (by calling this function multiple times) it is much more
efficient to call dwarf_get_fde_info_for_all_regs3() (in spite of the additional setup that
requires of the caller).

Rev 3.17 7 November 2020 - 180 -

- 181 -

int dwarf_get_fde_info_for_reg3(
Dwarf_Fde fde,
Dwarf_Half table_column,
Dwarf_Addr pc_requested,
Dwarf_Small *value_type,
Dwarf_Signed *offset_relevant,
Dwarf_Signed *register_num,
Dwarf_Signed *offset_or_block_len,
Dwarf_Ptr *block_ptr,
Dwarf_Addr *row_pc,
Dwarf_Error *error);

See also the nearly identical function dwarf_get_fde_info_for_reg3_b().

dwarf_get_fde_info_for_reg3() returns DW_DLV_OK on success. It sets
*value_type to one of DW_EXPR_OFFSET (0), DW_EXPR_VAL_OFFSET(1),
DW_EXPR_EXPRESSION(2) or DW_EXPR_VAL_EXPRESSION(3). On call,
table_column must be set to the register number of a real register. Not the cfa
’register’ or DW_FRAME_SAME_VALUE or DW_FRAME_UNDEFINED_VALUE.

if *value_type has the value DW_EXPR_OFFSET (0) then:

It sets *offset_relevant to non-zero if the offset is relevant for the row
specified by pc_requested and column specified by table_column or,
for the FDE specified by fde. In this case the *register_num will be set
to DW_FRAME_CFA_COL3 (. This is an offset(N) rule as specified in the
DWARF3/2 documents.

Adding the value of *offset_or_block_len to the value of the CFA
register gives the address of a location holding the previous value of register
table_column.

If offset is not relevant for this rule, *offset_relevant is set to zero.
*register_num will be set to the number of the real register holding the
value of the table_column register. This is the register(R) rule as specified
in DWARF3/2 documents.

The intent is to return the rule for the given pc value and register. The location
pointed to by register_num is set to the register value for the rule. The
location pointed to by offset is set to the offset value for the rule. Since
more than one pc value will have rows with identical entries, the user may want
to know the earliest pc value after which the rules for all the columns remained
unchanged. Recall that in the virtual table that the frame information
represents there may be one or more table rows with identical data (each such
table row at a different pc value). Given a pc_requested which refers to a
pc in such a group of identical rows, the location pointed to by row_pc is set
to the lowest pc value within the group of identical rows.

Rev 3.17 7 November 2020 - 181 -

- 182 -

If *value_type has the value DW_EXPR_VAL_OFFSET (1) then:
This will be a val_offset(N) rule as specified in the DWARF3/2 documents so
*offset_relevant will be non zero. The calculation is identical to the
DW_EXPR_OFFSET (0) calculation with *offset_relevant non-zero,
but the value resulting is the actual table_column value (rather than the
address where the value may be found).

If *value_type has the value DW_EXPR_EXPRESSION (1) then:
*offset_or_block_len is set to the length in bytes of a block of
memory with a DWARF expression in the block. *block_ptr is set to point
at the block of memory. The consumer code should evaluate the block as a
DWARF-expression. The result is the address where the previous value of the
register may be found. This is a DWARF3/2 expression(E) rule.

If *value_type has the value DW_EXPR_VAL_EXPRESSION (1) then:
The calculation is exactly as for DW_EXPR_EXPRESSION (1) but the result
of the DWARF-expression evaluation is the value of the table_column
(not the address of the value). This is a DWARF3/2 val_expression(E) rule.

dwarf_get_fde_info_for_reg returns DW_DLV_ERROR if there is an error and
if there is an error only the error pointer is set, none of the other output arguments are
touched.

It is usable with either dwarf_get_fde_n() or dwarf_get_fde_at_pc().

6.21.22 dwarf_get_fde_info_for_reg3_b()

This interface is suitable for DWARF2 and later. It returns the values for a particular real
register (Not for the CFA virtual register, see dwarf_get_fde_info_for_cfa_reg3_b()
below). If the application is going to retrieve the value for more than a few
table_column values at this pc_requested (by calling this function multiple
times) it is much more efficient to call dwarf_get_fde_info_for_all_regs3() (in spite of the
additional setup that requires of the caller).

Rev 3.17 7 November 2020 - 182 -

- 183 -

int dwarf_get_fde_info_for_reg3_b(
Dwarf_Fde fde,
Dwarf_Half table_column,
Dwarf_Addr pc_requested,
Dwarf_Small *value_type,
Dwarf_Signed *offset_relevant,
Dwarf_Signed *register_num,
Dwarf_Signed *offset_or_block_len,
Dwarf_Ptr *block_ptr,
Dwarf_Addr *row_pc,
Dwarf_Bool *has_more_rows,
Dwarf_Addr *subsequent_pc,
Dwarf_Error *error);

This is identical to dwarf_get_fde_info_for_reg3() except for the new
arguments has_more_rows and subsequent_pc which allow the caller to know if
there are more rows in the frame table and what the next pc value in the frame table for
this fde is. The two new arguments may be passed in as NULL if their values are not
needed by the caller.

6.21.23 dwarf_get_fde_info_for_cfa_reg3()

int dwarf_get_fde_info_for_cfa_reg3(Dwarf_Fde fde,
Dwarf_Addr pc_requested,
Dwarf_Small * value_type,
Dwarf_Signed* offset_relevant,
Dwarf_Signed* register_num,
Dwarf_Signed* offset_or_block_len,
Dwarf_Ptr * block_ptr ,
Dwarf_Addr * row_pc_out,
Dwarf_Error * error)

This is identical to dwarf_get_fde_info_for_reg3() except the returned values
are for the CFA rule. So register number *register_num will be set to a real register,
not one of the pseudo registers (which are usually DW_FRAME_CFA_COL3,
DW_FRAME_SAME_VALUE, or DW_FRAME_UNDEFINED_VALUE).

Applications like dwarfdump which access the register rules for every pc value in a
function may find the following function a slight performance improvement if the new
arguments are used appropriately. See dwarfdump for an example of use.

6.21.24 dwarf_get_fde_info_for_cfa_reg3_b()

Rev 3.17 7 November 2020 - 183 -

- 184 -

int dwarf_get_fde_info_for_cfa_reg3_b(Dwarf_Fde fde,
Dwarf_Addr pc_requested,
Dwarf_Small * value_type,
Dwarf_Signed* offset_relevant,
Dwarf_Signed* register_num,
Dwarf_Signed* offset_or_block_len,
Dwarf_Ptr * block_ptr ,
Dwarf_Addr * row_pc_out,
Dwarf_Bool * has_more_rows,
Dwarf_Addr * subsequent_pc,
Dwarf_Error * error)

This is identical to dwarf_get_fde_info_for_cfa_reg3() except for the new
arguments has_more_rows and subsequent_pc which allow the caller to know if
there are more rows in the frame table and what the next pc value is. The two new
arguments may be passed in as NULL if their values are not needed by the caller.

For a tool just wanting the frame information for a single pc_value this interface is no
more useful or efficient than dwarf_get_fde_info_for_cfa_reg3().

The essential difference is that when using
dwarf_get_fde_info_for_cfa_reg3() for all pc values for a function the
caller has no idea what is the next pc value that might have new frame data and iterating
through pc values (calling dwarf_get_fde_info_for_cfa_reg3() on each) is a
waste of cpu cycles. With dwarf_get_fde_info_for_cfa_reg3_b() the
has_more_rows and subsequent_pc arguments let the caller know whether there
are further rows and if so at what pc value.

If has_more_rows is non-null then 1 is returned through the pointer if, for the
pc_requested there is frame data for addresses after pc_requested in the frame.
And if there are no more rows in the frame data then 0 is set through the
has_more_rows pointer.

If subsequent_pc is non-null then the pc-value which has the next frame operator is
returned through the pointer. If no more rows are present zero is returned through the
pointer, but please use has_more_rows to determine if there are more rows.

6.21.25 dwarf_get_fde_info_for_all_regs3()

int dwarf_get_fde_info_for_all_regs3(
Dwarf_Fde fde,
Dwarf_Addr pc_requested,
Dwarf_Regtable3 *reg_table,
Dwarf_Addr *row_pc,
Dwarf_Error *error)

dwarf_get_fde_info_for_all_regs3() returns DW_DLV_OK and sets

Rev 3.17 7 November 2020 - 184 -

- 185 -

*reg_table for the row specified by pc_requested for the FDE specified by fde.
The intent is to return the rules for decoding all the registers, given a pc value.
reg_table is an array of rules, the array size specified by the caller. plus a rule for the
CFA. The rule for the cfa returned in *reg_table defines the CFA value at
pc_requested The rule for each register contains several values that enable the
consumer to determine the previous value of the register (see the earlier documentation of
Dwarf_Regtable3). dwarf_get_fde_info_for_reg3() and the
Dwarf_Regtable3 documentation above for a description of the values for each row.

dwarf_get_fde_info_for_all_regs3 returns DW_DLV_ERROR if there is an
error.

It is up to the caller to allocate space for *reg_table and initialize it properly.

6.21.26 dwarf_get_fde_n()

int dwarf_get_fde_n(
Dwarf_Fde *fde_data,
Dwarf_Unsigned fde_index,
Dwarf_Fde *returned_fde
Dwarf_Error *error)

dwarf_get_fde_n() returns DW_DLV_OK and sets returned_fde to the
Dwarf_Fde descriptor whose index is fde_index in the table of Dwarf_Fde
descriptors pointed to by fde_data. The index starts with 0. The table pointed to by
fde_data is required to contain at least one entry. If the table has no entries at all the error
checks may refer to uninitialized memory. Returns DW_DLV_NO_ENTRY if the index
does not exist in the table of Dwarf_Fde descriptors. Returns DW_DLV_ERROR if there
is an error. This function cannot be used unless the block of Dwarf_Fde descriptors has
been created by a call to dwarf_get_fde_list().

6.21.27 dwarf_get_fde_at_pc()

int dwarf_get_fde_at_pc(
Dwarf_Fde *fde_data,
Dwarf_Addr pc_of_interest,
Dwarf_Fde *returned_fde,
Dwarf_Addr *lopc,
Dwarf_Addr *hipc,
Dwarf_Error *error)

dwarf_get_fde_at_pc() returns DW_DLV_OK and sets returned_fde to a
Dwarf_Fde descriptor for a function which contains the pc value specified by
pc_of_interest. In addition, it sets the locations pointed to by lopc and hipc to
the low address and the high address covered by this FDE, respectively. The table

Rev 3.17 7 November 2020 - 185 -

- 186 -

pointed to by fde_data is required to contain at least one entry. If the table has no entries
at all the error checks may refer to uninitialized memory. It returns DW_DLV_ERROR on
error. It returns DW_DLV_NO_ENTRY if pc_of_interest is not in any of the FDEs
represented by the block of Dwarf_Fde descriptors pointed to by fde_data. This
function cannot be used unless the block of Dwarf_Fde descriptors has been created by
a call to dwarf_get_fde_list().

6.21.28 dwarf_expand_frame_instructions()

int dwarf_expand_frame_instructions(
Dwarf_Cie cie,
Dwarf_Ptr instruction,
Dwarf_Unsigned i_length,
Dwarf_Frame_Op **returned_op_list,
Dwarf_Signed * returned_op_count,
Dwarf_Error *error);

dwarf_expand_frame_instructions() is a High-level interface function which
expands a frame instruction byte stream into an array of Dwarf_Frame_Op structures.
To indicate success, it returns DW_DLV_OK. The address where the byte stream begins is
specified by instruction, and the length of the byte stream is specified by
i_length. The location pointed to by returned_op_list is set to point to a table
of returned_op_count pointers to Dwarf_Frame_Op which contain the frame
instructions in the byte stream. It returns DW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY. After a successful return, the array of structures should be freed
using dwarf_dealloc() with the allocation type DW_DLA_FRAME_BLOCK (when
they are no longer of interest).

Not all CIEs have the same address-size, so it is crucial that a CIE pointer to the frame’s
CIE be passed in.

Figure 40. Examples dwarf_expand_frame_instructions()

Rev 3.17 7 November 2020 - 186 -

- 187 -

void examples(Dwarf_Debug dbg,Dwarf_Cie cie,
Dwarf_Ptr instruction,Dwarf_Unsigned len)

{
Dwarf_Signed count = 0;
Dwarf_Frame_Op *frameops = 0;
Dwarf_Error error = 0;
int res = 0;

res = dwarf_expand_frame_instructions(cie,instruction,len,
&frameops,&count, &error);

if (res == DW_DLV_OK) {
Dwarf_Signed i = 0;

for (i = 0; i < count; ++i) {
/* use frameops[i] */

}
dwarf_dealloc(dbg, frameops, DW_DLA_FRAME_BLOCK);

}
}

6.21.29 dwarf_get_fde_exception_info()

int dwarf_get_fde_exception_info(
Dwarf_Fde fde,
Dwarf_Signed * offset_into_exception_tables,
Dwarf_Error * error);

dwarf_get_fde_exception_info() is an IRIX specific function which returns
an exception table signed offset through offset_into_exception_tables. The
function never returns DW_DLV_NO_ENTRY. If DW_DLV_NO_ENTRY is NULL the
function returns DW_DLV_ERROR. For non-IRIX objects the offset returned will always
be zero. For non-C++ objects the offset returned will always be zero. The meaning of
the offset and the content of the tables is not defined in this document. The applicable
CIE augmentation string (see above) determines whether the value returned has meaning.

6.22 Location Expression Evaluation

An "interpreter" which evaluates a location expression is required in any debugger. There
is no interface defined here at this time.

One problem with defining an interface is that operations are machine dependent: they
depend on the interpretation of register numbers and the methods of getting values from
the environment the expression is applied to.

It would be desirable to specify an interface.

Rev 3.17 7 November 2020 - 187 -

- 188 -

6.22.1 Location List Internal-level Interface

6.22.1.1 dwarf_get_loclist_entry()

int dwarf_get_loclist_entry(
Dwarf_Debug dbg,
Dwarf_Unsigned offset,
Dwarf_Addr *hipc_offset,
Dwarf_Addr *lopc_offset,
Dwarf_Ptr *data,
Dwarf_Unsigned *entry_len,
Dwarf_Unsigned *next_entry,
Dwarf_Error *error)

This function is ill suited to use with 21st century DWARF as there is just not enough
data provided in the interface. Do not use this interface. Use
dwarf_get_locdesc_entry_c() instead.

The function reads a location list entry starting at offset and returns through pointers
(when successful) the high pc hipc_offset, low pc lopc_offset, a pointer to the
location description data data, the length of the location description data entry_len,
and the offset of the next location description entry next_entry.

This function will often work correctly (meaning with most objects compiled for
DWARF3 or DWARF3) but will not work correctly (and can crash an application calling
it) if either some location list applies to a compilation unit with an address_size different
from the overall address_size of the object file being read or if the .debug_loc section
being read has random padding bytes between loclists. Neither of these characteristics
necessarily represents a bug in the compiler/linker toolset that produced the object file
being read. The DWARF standard allows both characteristics.

dwarf_dwarf_get_loclist_entry() returns DW_DLV_OK if successful.
DW_DLV_NO_ENTRY is returned when the offset passed in is beyond the end of the
.debug_loc section (expected if you start at offset zero and proceed through all the
entries). DW_DLV_ERROR is returned on error.

The hipc_offset, low pc lopc_offset are offsets from the beginning of the
current procedure, not genuine pc values.

The example of use has been deleted. Do not use this function.

6.23 Abbreviations access

These are Internal-level Interface functions. Debuggers can ignore this.

6.23.1 dwarf_get_abbrev()

Rev 3.17 7 November 2020 - 188 -

- 189 -

int dwarf_get_abbrev(
Dwarf_Debug dbg,
Dwarf_Unsigned offset,
Dwarf_Abbrev *returned_abbrev,
Dwarf_Unsigned *length,
Dwarf_Unsigned *attr_count,
Dwarf_Error *error)

The function dwarf_get_abbrev() returns DW_DLV_OK and sets
*returned_abbrev to Dwarf_Abbrev, a descriptor for the abbreviation that begins
at offset *offset in the abbreviations section (i.e .debug_abbrev) on success. The user
is responsible for making sure that a valid abbreviation begins at offset in the
abbreviations section. The location pointed to by length is set to the length in bytes of
the abbreviation set in the abbreviations section. The location pointed to by
attr_count is set to the number of attributes in the abbreviation. An abbreviation
entry with a length of 1 is the 0 byte of the last abbreviation entry of a compilation unit.

dwarf_get_abbrev() returns DW_DLV_NO_ENTRY if the .debug_abbrev section is
missing or if the offset passed in is past the end of the section.

dwarf_get_abbrev() returns DW_DLV_ERROR on error. If the call succeeds, the
storage pointed to by *returned_abbrev should be freed, using
dwarf_dealloc() with the allocation type DW_DLA_ABBREV when no longer
needed.

6.23.2 dwarf_get_abbrev_tag()

int dwarf_get_abbrev_tag(
Dwarf_Abbrev abbrev,
Dwarf_Half *return_tag,
Dwarf_Error *error);

If successful, dwarf_get_abbrev_tag() returns DW_DLV_OK and sets
*return_tag to the tag of the given abbreviation. It returns DW_DLV_ERROR on
error. It nev er returns DW_DLV_NO_ENTRY.

6.23.3 dwarf_get_abbrev_code()

int dwarf_get_abbrev_code(
Dwarf_Abbrev abbrev,
Dwarf_Unsigned *return_code,
Dwarf_Error *error);

If successful, dwarf_get_abbrev_code() returns DW_DLV_OK and sets
*return_code to the abbreviation code of the given abbreviation. It returns
DW_DLV_ERROR on error. It nev er returns DW_DLV_NO_ENTRY.

Rev 3.17 7 November 2020 - 189 -

- 190 -

6.23.4 dwarf_get_abbrev_children_flag()

int dwarf_get_abbrev_children_flag(
Dwarf_Abbrev abbrev,
Dwarf_Signed *returned_flag,
Dwarf_Error *error)

The function dwarf_get_abbrev_children_flag() returns DW_DLV_OK and
sets returned_flag to DW_children_no (if the given abbreviation indicates that a
die with that abbreviation has no children) or DW_children_yes (if the given
abbreviation indicates that a die with that abbreviation has a child). It returns
DW_DLV_ERROR on error.

6.23.5 dwarf_get_abbrev_entry_b()

int dwarf_get_abbrev_entry_b(Dwarf_Abbrev abbrev,
Dwarf_Unsigned index,
Dwarf_Bool filter_outliers,
Dwarf_Unsigned * returned_attr_num,
Dwarf_Unsigned * returned_form,
Dwarf_Signed * returned_implicit_const,
Dwarf_Off * offset,
Dwarf_Error * error)

dwarf_get_abbrev_entry_b() is new in August 2019. It should be used in place
of dwarf_get_abbrev_entry() as dwarf_get_abbrev_entry() cannot
return the DWARF5 implicit const value and and dwarf_get_abbrev_entry() can
hide some instances of corrupt uleb abbreviation values.

While the returned_attr_num and and returned_form are only correct if they
each fit in a Dwarf_Half value, we return larger values in certain cases (see next
paragraph).

If filter_outliers is passed in zero then erroneous returned_attr_num or
and returned_form are returned whether their values are sensible or not and
DW_DLV_OK is the returned value. This is useful for dwarfdump as dwarfdump checks
abbreviation values quite thoroughly and reports errors in detail (dwarfdump -kb).

If filter_outliers is passed in non-zero then DW_DLV_OK is returned only if
returned_attr_num and and returned_form are both legitimate values.

If successful, dwarf_get_abbrev_entry_b() returns DW_DLV_OK and sets
*attr_num to the attribute code of the attribute whose index is specified by index in
the given abbreviation.

The index starts at 0.

The location pointed to by returned_attr_num is set to the attribute number
(example: DW_AT_name). The location pointed to by returned_form is set to the
form of the attribute (example: DW_FORM_string). The location pointed to by
returned_implicit_const is set to the implicit const value if and only if the

Rev 3.17 7 November 2020 - 190 -

- 191 -

FORM returned is DW_FORM_implicit_const

The location pointed to by offset is set to the byte offset of the attribute in the
abbreviations section.

The function returns DW_DLV_NO_ENTRY if the index specified is outside the range of
attributes in this abbreviation.

The function returns DW_DLV_ERROR on error and sets *error to an error value
instance.

6.23.6 dwarf_get_abbrev_entry()

int dwarf_get_abbrev_entry(
Dwarf_Abbrev abbrev,
Dwarf_Signed index,
Dwarf_Half *attr_num,
Dwarf_Signed *form,
Dwarf_Off *offset,
Dwarf_Error *error)

This function cannot return DW_FORM_implicit_const const values. When convenient
all callers should switch to using the dwarf_get_abbrev_entry_b() function.

If successful, dwarf_get_abbrev_entry() returns DW_DLV_OK and sets
*attr_num to the attribute code of the attribute whose index is specified by index in
the given abbreviation. The index starts at 0. The location pointed to by form is set to
the form of the attribute. The location pointed to by offset is set to the byte offset of
the attribute in the abbreviations section.

It returns DW_DLV_NO_ENTRY if the index specified is outside the range of attributes in
this abbreviation.

It returns DW_DLV_ERROR on error.

6.24 String Section Operations

The .debug_str section contains only strings. Debuggers need never use this interface: it
is only for debugging problems with the string section itself.

6.24.1 dwarf_get_string_section_name()

int dwarf_get_string_section_name(Dwarf_Debug dbg,
const char ** sec_name,
Dwarf_Error *error)

dwarf_get_string_section_name() lets consumers access the object string
section name. This is useful for applications wanting to print the name, but of course the
object section name is not really a part of the DWARF information. Most applications

Rev 3.17 7 November 2020 - 191 -

- 192 -

will probably not call this function. It can be called at any time after the Dwarf_Debug
initialization is done. See also dwarf_get_die_section_name_b().

The function dwarf_get_string_section_name() operates on the the
.debug_string[.dwo] section.

If the function succeeds, *sec_name is set to a pointer to a string with the object
section name and the function returns DW_DLV_OK. Do not free the string whose pointer
is returned. For non-Elf objects it is possible the string pointer returned will be NULL or
will point to an empty string. It is up to the calling application to recognize this
possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

If there is an internal error detected the function returns DW_DLV_ERROR and sets the
*error pointer.

6.24.2 dwarf_get_str()

int dwarf_get_str(
Dwarf_Debug dbg,
Dwarf_Off offset,
char **string,
Dwarf_Signed *returned_str_len,
Dwarf_Error *error)

The function dwarf_get_str() returns DW_DLV_OK and sets
*returned_str_len to the length of the string, not counting the null terminator, that
begins at the offset specified by offset in the .debug_str section. The location pointed
to by string is set to a pointer to this string. The next string in the .debug_str section
begins at the previous offset + 1 + *returned_str_len. A zero-length string is
NOT the end of the section. If there is no .debug_str section, DW_DLV_NO_ENTRY is
returned. If there is an error, DW_DLV_ERROR is returned. If we are at the end of the
section (that is, offset is one past the end of the section) DW_DLV_NO_ENTRY is
returned. If the offset is some other too-large value then DW_DLV_ERROR is
returned.

6.25 String Offsets Section Operations

The .debug_str_offsets section contains only table arrays (with headers) and Debuggers
should never need to use this interface. The normal string access functions use the
section tables transparently. The functions here are only intended to allow dwarfdump
(or the like) print the section completely and to help compiler developers look for bugs in
the section.

Figure 41. examplestringoffsets dwarf_open_str_offsets_table_access() etc

Rev 3.17 7 November 2020 - 192 -

- 193 -

void examplestringoffsets(Dwarf_Debug dbg)
{

int res = 0;
Dwarf_Str_Offsets_Table sot = 0;
Dwarf_Unsigned wasted_byte_count = 0;
Dwarf_Unsigned table_count = 0;
Dwarf_Error error = 0;

res = dwarf_open_str_offsets_table_access(dbg, &sot,&error);
if(res == DW_DLV_NO_ENTRY) {

/* No such table */
return;

}
if(res == DW_DLV_ERROR) {

/* Something is very wrong. Print the error? */
return;

}
for(;;) {

Dwarf_Unsigned unit_length =0;
Dwarf_Unsigned unit_length_offset =0;
Dwarf_Unsigned table_start_offset =0;
Dwarf_Half entry_size = 0;
Dwarf_Half version =0;
Dwarf_Half padding =0;
Dwarf_Unsigned table_value_count =0;
Dwarf_Unsigned i = 0;
Dwarf_Unsigned table_entry_value = 0;

res = dwarf_next_str_offsets_table(sot,
&unit_length, &unit_length_offset,
&table_start_offset,
&entry_size,&version,&padding,
&table_value_count,&error);

if (res == DW_DLV_NO_ENTRY) {
/* We have dealt with all tables */
break;

}
if (res == DW_DLV_ERROR) {

/* Something badly wrong. Do something. */
return;

}
/* One could call dwarf_str_offsets_statistics to

get the wasted bytes so far, but we do not do that
in this example. */

/* Possibly print the various table-related values
returned just above. */

Rev 3.17 7 November 2020 - 193 -

- 194 -

for (i=0; i < table_value_count; ++i) {
res = dwarf_str_offsets_value_by_index(sot,i,

&table_entry_value,&error);
if (res != DW_DLV_OK) {

/* Something is badly wrong. Do something. */
return;

}
/* Do something with the table_entry_value

at this index. Maybe just print it.
It is an offset in .debug_str. */

}
}
res = dwarf_str_offsets_statistics(sot,&wasted_byte_count,

&table_count,&error);
if (res == DW_DLV_OK) {

/* The wasted byte count is set. Print it or something.
One hopes zero bytes are wasted.
Print the table count if one is interested. */

}
res = dwarf_close_str_offsets_table_access(sot,&error);
/* There is little point in checking the return value

as little can be done about any error. */
sot = 0;

}

6.25.1 dwarf_open_str_offsets_table_access()

int dwarf_open_str_offsets_table_access(
Dwarf_Debug dbg,
Dwarf_Str_Offsets_Table * table_data,
Dwarf_Error * error);

dwarf_open_str_offsets_table_access() creates an opaque struct and
returns a pointer to it on success. That struct pointer is used in all subsequent operations
on the table. Through the function dwarf_next_str_offsets_table() the
caller can iterate through each of the per-CU offset tables.

If there is no such section, or if the section is empty the function returns
DW_DLV_NO_ENTRY.

If there is an error (such as out-of-memory) the function returns DW_DLV_ERROR and
sets an error value through the error pointer.

6.25.2 dwarf_close_str_offsets_table_access()

Rev 3.17 7 November 2020 - 194 -

- 195 -

int
dwarf_close_str_offsets_table_access(

Dwarf_Str_Offsets_Table table_data,
Dwarf_Error * error);

On success, dwarf_close_str_offsets_table_access() frees any allocated
data associated with the struct pointed to by table_data and returns DW_DLV_OK.
It is up to the caller to set the table_data pointer to NULL if desired. The pointer is
unusable at that point and any other calls to libdwarf using that pointer will fail.

It returns DW_DLV_OK on error. Any error suggests there is memory corruption or an
error in the call. Something serious happened.

It never returns DW_DLV_NO_ENTRY, but if it did there would be nothing the caller
could do anyway..

If one forgets to call this function the memory allocated will be freed automatically by to
call to dwarf_finish(), as is true of all other data allocated by libdwarf.

6.25.3 dwarf_next_str_offsets_table()

int dwarf_next_str_offsets_table(
Dwarf_Str_Offsets_Table table,
Dwarf_Unsigned *unit_length_out,
Dwarf_Unsigned *unit_length_offset_out,
Dwarf_Unsigned *table_start_offset_out,
Dwarf_Half *entry_size_out,
Dwarf_Half *version_out,
Dwarf_Half *padding_out,
Dwarf_Unsigned *table_value_count_out,
Dwarf_Error * error);

Each call to dwarf_next_str_offsets_table() returns the next String Offsets
table in the .debug_str_offsets section. Typically there would be one such table for each
CU in .debug_info[.dwo] contributing to .debug_str_offsets. The table contains
(internally, hidden) the section offset of the next table.

On success it returns DW_DLV_OK and sets various fields representing data about the
current table (fields described below).

If there are no more tables it returns DW_DLV_NO_ENTRY.

On error it returns DW_DLV_ERROR and passes back error details through the error
pointer.

The returned values are intended to let the caller understand the table header and the table
in detail. These pointers are only used if the call returned DW_DLV_OK.

unit_length_out is set to the unit_length of a String Offsets Table Header. Which
means it gives the length, in bytes, of the data following the length value that belongs to
this table.

Rev 3.17 7 November 2020 - 195 -

- 196 -

unit_length_offset_out is set to the section offset of the table header.

table_start_offset_out is set to the section offset of the array of offsets in this
table.

entry_size_out is set to the size of a table entry. Which is 4 for 32-bit offsets in this
table and 8 for 64-bit offsets in this table.

version_out is set to the version number in the table header. The only current valid
value is 5.

padding_out is set to the 16-bit padding value in the table header. In a correct table
header the value is zero.

table_value_count_out is set to the number of entries in the array of offsets in
this table. Each entry is entry_size_out bytes long. Use this value in calling
dwarf_str_offsets_value_by_index().

6.25.4 dwarf_str_offsets_value_by_index()

int dwarf_str_offsets_value_by_index(
Dwarf_Str_Offsets_Table sot,
Dwarf_Unsigned index,
Dwarf_Unsigned *stroffset,
Dwarf_Error *error);

On success, dwarf_str_offsets_value_by_index() returns DW_DLV_OK
and sets the offset from the array of string offsets in the current table at the input index.

Valid index values are zero through table_value_count_out - 1

A function is used instead of simply letting callers use pointers as libdwarf correctly
handles endianness differences (between the system running libdwarf and the object file
being inspected) so offsets can be reported properly.

DW_DLV_ERROR is returned on error.

DW_DLV_NO_ENTRY is nev er returned.

6.25.5 dwarf_str_offsets_statistics()

int dwarf_str_offsets_statistics(
Dwarf_Str_Offsets_Table table_data,
Dwarf_Unsigned * wasted_byte_count,
Dwarf_Unsigned * table_count,
Dwarf_Error * error);

Normally called after all tables have been inspected to return (through a pointer) the
count of apparently-wasted bytes in the section. It can be called at any point that the
Dwarf_Str_Offsets_Table pointer is valid.

On error it returns DW_DLV_ERROR and sets an error value through the pointer.

DW_DLV_NO_ENTRY is nev er returned.

Rev 3.17 7 November 2020 - 196 -

- 197 -

On success it returns DW_DLV_OK and sets values through the two pointers. Calling
just after each table is accessed by dwarf_next_str_offsets_table() will
reveal the sum of all wasted bytes at that point in iterating through the section.

table_count is the count of table headers encountered so far.

By wasted bytes we mean bytes in between tables. libdwarf has no idea whether any
apparently-valid table data is in fact useless.

6.26 Address Range Operations

These functions provide information about address ranges. The content is in the
.debug_aranges section. Address ranges map ranges of pc values to the
corresponding compilation-unit die that covers the address range. In the DWARF2,3,4
Standards this is described under "Accelerated Access" "Lookup by Address".

6.26.1 dwarf_get_aranges_section_name()

int dwarf_get_aranges_section_name(Dwarf_Debug dbg,
const char ** sec_name,
Dwarf_Error *error)

*dwarf_get_aranges_section_name() retrieves the object file section name of
the applicable aranges section. This is useful for applications wanting to print the name,
but of course the object section name is not really a part of the DWARF information.
Most applications will probably not call this function. It can be called at any time after
the Dwarf_Debug initialization is done.

If the function succeeds, *sec_name is set to a pointer to a string with the object
section name and the function returns DW_DLV_OK. Do not free the string whose pointer
is returned. For non-Elf objects it is possible the string pointer returned will be NULL or
will point to an empty string. It is up to the calling application to recognize this
possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

If there is an internal error detected the function returns DW_DLV_ERROR and sets the
*error pointer.

6.26.2 dwarf_get_aranges()

int dwarf_get_aranges(
Dwarf_Debug dbg,
Dwarf_Arange **aranges,
Dwarf_Signed * returned_arange_count,
Dwarf_Error *error)

Rev 3.17 7 November 2020 - 197 -

- 198 -

The function dwarf_get_aranges() returns DW_DLV_OK and sets
*returned_arange_count to the count of the number of address ranges in the
.debug_aranges section (for all compilation units). It sets *aranges to point to a block
of Dwarf_Arange descriptors, one for each address range. It returns DW_DLV_ERROR
on error. It returns DW_DLV_NO_ENTRY if there is no .debug_aranges section.

This not only reads all the ranges, it also reads the per-compilation-unit headers in
.debug_aranges and verifies they make sense.

Figure 42. Exampleu dwarf_get_aranges()

void exampleu(Dwarf_Debug dbg)
{

Dwarf_Signed count = 0;
Dwarf_Arange *arang = 0;
int res = 0;
Dwarf_Error error = 0;

res = dwarf_get_aranges(dbg, &arang,&count, &error);
if (res == DW_DLV_OK) {

Dwarf_Signed i = 0;

for (i = 0; i < count; ++i) {
/* use arang[i] */
dwarf_dealloc(dbg, arang[i], DW_DLA_ARANGE);

}
dwarf_dealloc(dbg, arang, DW_DLA_LIST);

}
}

6.26.3 dwarf_get_arange()

int dwarf_get_arange(
Dwarf_Arange *aranges,
Dwarf_Unsigned arange_count,
Dwarf_Addr address,
Dwarf_Arange *returned_arange,
Dwarf_Error *error);

The function dwarf_get_arange() takes as input a pointer to a block of
Dwarf_Arange pointers, and a count of the number of descriptors in the block. It then
searches for the descriptor that covers the given address. If it finds one, it returns
DW_DLV_OK and sets *returned_arange to the descriptor. It returns
DW_DLV_ERROR on error. It returns DW_DLV_NO_ENTRY if there is no .debug_aranges
entry covering that address.

Rev 3.17 7 November 2020 - 198 -

- 199 -

6.26.4 dwarf_get_cu_die_offset()

int dwarf_get_cu_die_offset(
Dwarf_Arange arange,
Dwarf_Off *returned_cu_die_offset,
Dwarf_Error *error);

The function dwarf_get_cu_die_offset() takes a Dwarf_Arange descriptor
as input, and if successful returns DW_DLV_OK and sets
*returned_cu_die_offset to the offset in the .debug_info section of the
compilation-unit DIE for the compilation-unit represented by the given address range. It
returns DW_DLV_ERROR on error.

6.26.5 dwarf_get_arange_cu_header_offset()

int dwarf_get_arange_cu_header_offset(
Dwarf_Arange arange,
Dwarf_Off *returned_cu_header_offset,
Dwarf_Error *error)

The function dwarf_get_arange_cu_header_offset() takes a
Dwarf_Arange descriptor as input, and if successful returns DW_DLV_OK and sets
*returned_cu_header_offset to the offset in the .debug_info section of the
compilation-unit header for the compilation-unit represented by the given address range.
It returns DW_DLV_ERROR on error.

This function added Rev 1.45, June, 2001.

This function is declared as ’optional’ in libdwarf.h on IRIX systems so the
_MIPS_SYMBOL_PRESENT predicate may be used at run time to determine if the
version of libdwarf linked into an application has this function.

6.26.6 dwarf_get_arange_info_b()

int dwarf_get_arange_info_b(
Dwarf_Arange arange,
Dwarf_Unsigned *segment,
Dwarf_Unsigned *segment_entry_size;
Dwarf_Addr *start,
Dwarf_Unsigned *length,
Dwarf_Off *cu_die_offset,
Dwarf_Error *error)

The function dwarf_get_arange_info_b() returns DW_DLV_OK and returns
detailed information on the address range through the pointers.

Rev 3.17 7 November 2020 - 199 -

- 200 -

segment is the segment number for segmented addresss spaces and it is only
meaningful if segment_entry_size is non-zero.

It puts the starting value of the address range in the location pointed to by start, and
the length of the address range in the location pointed to by length.

It sets the cu_die_offset. in the .debug_info, section of the compilation-unit
DIE for the compilation-unit represented by the address range.

It returns DW_DLV_ERROR on error. and sets error,

6.26.7 dwarf_get_arange_info()

int dwarf_get_arange_info(
Dwarf_Arange arange,
Dwarf_Addr *start,
Dwarf_Unsigned *length,
Dwarf_Off *cu_die_offset,
Dwarf_Error *error)

This is the same as dwarf_get_arange_info_b() except that this earlier function
does not have a way to return the segment information.

6.27 General Low Lev el Operations

This function is low-level and intended for use only by programs such as dwarf-dumpers.

6.27.1 dwarf_get_offset_size()

int dwarf_get_offset_size(Dwarf_Debug dbg,
Dwarf_Half *offset_size,
Dwarf_Error *error)

The function dwarf_get_offset_size() returns DW_DLV_OK on success and sets
the *offset_size to the size in bytes of an offset. In case of error, it returns
DW_DLV_ERROR and does not set *offset_size.

The offset size returned is the overall address size, which can be misleading if different
compilation units have different address sizes. Many ABIs have only a single address
size per executable, but differing address sizes are becoming more common.

6.27.2 dwarf_get_address_size()

int dwarf_get_address_size(Dwarf_Debug dbg,
Dwarf_Half *addr_size,
Dwarf_Error *error)

The function dwarf_get_address_size() returns DW_DLV_OK on success and
sets the *addr_size to the size in bytes of an address. In case of error, it returns

Rev 3.17 7 November 2020 - 200 -

- 201 -

DW_DLV_ERROR and does not set *addr_size.

The address size returned is the overall address size, which can be misleading if different
compilation units have different address sizes. Many ABIs have only a single address
size per executable, but differing address sizes are becoming more common.

Use dwarf_get_die_address_size() instead whenever possible.

6.27.3 dwarf_get_die_address_size()

int dwarf_get_die_address_size(Dwarf_Die die,
Dwarf_Half *addr_size,
Dwarf_Error *error)

The function dwarf_get_die_address_size() returns DW_DLV_OK on success
and sets the *addr_size to the size in bytes of an address. In case of error, it returns
DW_DLV_ERROR and does not set *addr_size.

The address size returned is the address size of the compilation unit owning the die

This is the preferred way to get address size when the Dwarf_Die is known.

6.28 Ranges Operations DWARF5 (.debug_rnglists)

These functions provide information about the address ranges indicated by a
DW_AT_ranges attribute of a DIE. The ranges are recorded in the
.debug_rnglists section.

The section requires that each group of ranges has a header and the compilation unit may
have a DW_AT_ranges_base attribute that must be added to the DW_AT_ranges
attribute value to get the true ranges offset.

(A compiler generating DW_AT_ranges_base will add a relocation for that attribute
value but will not have to make the DW_AT_ranges attributes relocatable and will thus
save space in the object (ie, .o) file and save link time.)

See DWARF5 Section 2.17.3 Non-Contiguous Address Ranges and Section 7.28 Range
List Table.

Section 7.28 describes the header fields for a Range List Table. There will usually be
many such tables, in some sequence, in the .debug_rnglists section. Here we call each
header Dwarf_Rnglists_Head (a pointer to an opaque struct).

6.28.1 Getting rnglists data for a DIE

This set of interfaces provides access to the DWARF5 .debug_rnglists entries for a
particular DIE. Here is an example using the functions described below:

Rev 3.17 7 November 2020 - 201 -

- 202 -

Rev 3.17 7 November 2020 - 202 -

- 203 -

Figure 43. Example .debug_rnglist for attribute
int example_rnglist_for_attribute(Dwarf_Attribute attr,

Dwarf_Unsigned attrvalue,Dwarf_Error *error)
{

/* attrvalue must be the DW_AT_ranges
DW_FORM_rnglistx or DW_FORM_sec_offset value
extracted from attr. */

int res = 0;
Dwarf_Half theform = 0;
Dwarf_Unsigned entries_count;
Dwarf_Unsigned global_offset_of_rle_set;
Dwarf_Rnglists_Head rnglhead = 0;
Dwarf_Unsigned i = 0;

res = dwarf_rnglists_get_rle_head(attr,
theform,
attrvalue,
&rnglhead,
&entries_count,
&global_offset_of_rle_set,
error);

if (res != DW_DLV_OK) {
return res;

}
for (i = 0; i < entries_count; ++i) {

unsigned entrylen = 0;
unsigned code = 0;
Dwarf_Unsigned rawlowpc = 0;
Dwarf_Unsigned rawhighpc = 0;
Dwarf_Unsigned lowpc = 0;
Dwarf_Unsigned highpc = 0;
Dwarf_Bool debug_addr_unavailable = FALSE;

/* Actual addresses are most likely what one
wants to know, not the lengths/offsets
recorded in .debug_rnglists. */

res = dwarf_get_rnglists_entry_fields_a(rnglhead,
i,&entrylen,&code,
&rawlowpc,&rawhighpc,
&debug_addr_unavailable,
&lowpc,&highpc,error);

if (res != DW_DLV_OK) {
dwarf_dealloc_rnglists_head(rnglhead);
return res;

}
if (code == DW_RLE_end_of_list) {

Rev 3.17 7 November 2020 - 203 -

- 204 -

/* we are done */
break;

}
if (code == DW_RLE_base_addressx ||

code == DW_RLE_base_address) {
/* We do not need to use these, they

have been accounted for already. */
continue;

}
if (debug_addr_unavailable) {

/* lowpc and highpc are not real addresses */
continue;

}
/* Here do something with lowpc and highpc, these

are real addresses */
}
dwarf_dealloc_rnglists_head(rnglhead);
return DW_DLV_OK;

}

6.28.1.1 dwarf_rnglists_get_rle_head()

This function is used to enable access to the specific set of rnglist entries applying to a
specific DW_AT_rangees attribute.

int dwarf_rnglists_get_rle_head(Dwarf_Attribute attr,
Dwarf_Half theform,
Dwarf_Unsigned attr_val,
Dwarf_Rnglists_Head *head_out,
Dwarf_Unsigned *entries_count_out,
Dwarf_Unsigned *global_offset_of_rle_set,
Dwarf_Error *error);

Given a DW_AT_ranges Dwarf_Attribute, the FORM from that attribute, and the
value of the the attribute (which might be an index from DW_FORM_rnglistx or a
section offset from DW_FORM_sec_offset the function determines which
Dwarf_Rnglists_Head applies and returns the pointer on success (meaning it
returned . DW_DLV_OK). And on sucess it also returns the global offset of a set of
rnglist entries within that particular Dwarf_Rnglists_Head (not needed except to show it
to users) as well as the count of entries in that set (which is crucial to iterate through the
rnglist entries applicable).

If not successful none of the pointers head_out, entries_count_out,
global_offset will not be touched by the function.

If there is some problem with the section it will return DW_DLV_ERROR and return the

Rev 3.17 7 November 2020 - 204 -

- 205 -

error informatio through. *error.

There is, currently, no situation in which it will return DW_DLV_NO_ENTRY.

See dwarf_dealloc_rnglists_head() below to release the storage allocated by
a successful call here.

6.28.1.2 dwarf_get_rnglist_head_basics()

int dwarf_get_rnglist_head_basics(
Dwarf_Rnglists_Head head,
Dwarf_Unsigned * rle_count,
Dwarf_Unsigned * rle_version,
Dwarf_Unsigned * rnglists_index_returned,
Dwarf_Unsigned * bytes_total_in_rle,
unsigned * offset_size,
unsigned * address_size,
unsigned * segment_selector_size,
Dwarf_Unsigned * overall_offset_of_this_context,
Dwarf_Unsigned * total_length_of_this_context,
Dwarf_Bool * rnglists_base_present,
Dwarf_Unsigned * rnglists_base,
Dwarf_Bool * rnglists_base_address_present,
Dwarf_Unsigned * rnglists_base_address,
Dwarf_Bool * rnglists_debug_addr_base_present,
Dwarf_Unsigned * rnglists_debug_addr_base,
Dwarf_Error *error)

The function dwarf_get_rnglist_head_basics() allows caller to print or
display the fields of the Dwarf_Rnglists_Head that might be of interest for understanding
the section data for that Dwarf_Rnglists_Head.

It is not needed to access the rangelist data. It currently returns only DW_DLV_OK.

6.28.1.3 dwarf_get_rnglists_entry_fields_a()

Rev 3.17 7 November 2020 - 205 -

- 206 -

int dwarf_get_rnglists_entry_fields_a(
Dwarf_Rnglists_Head head,
Dwarf_Unsigned entrynum,
unsigned *entrylen,
unsigned *code,
Dwarf_Unsigned *raw1,
Dwarf_Unsigned *raw2,
Dwarf_Bool *debug_addr_unavailable,
Dwarf_Unsigned *cooked1,
Dwarf_Unsigned *cooked2,
Dwarf_Error *err)

This is the function to access the rnglist entries for this Dwarf_Rnglists_Head
Call this with entrynum in the normal iteration "i = 0; i < entries_count; ++i"
where entries_count was returned by dwarf_rnglists_get_rle_head()
through a pointer.

On success DW_DLV_OK is returned and the following fields are set through the pointers.

The entrylen value returned is the length, in bytes, of the single entry’s length.

The code value returned is the type of entry, DW_RLE_startx_endx (see
dwarf.h).

The raw1 and raw2 values returned are the actual values in the rangelist entry (address,
length, or index depending). For basename entries both values are set to the single value
in the entry (an address or index). For end of list entries neither value is set.

If debug_addr_unavailable is returns non-zero then the cooked1 and cooked2
values are not set usefully and should be ignored. The issue arises because with dwp/dwo
object files the .debug_addr section will be in the executable and if the
dwarf_set_tied_dbg() function was not called to enable access to .debug_addr the
’cooked’ fields cannot be calculated.

The cooked1 cooked2 values returned are the actual addresses in the rangelist entry,
after any necessary translation of indexes and offsets and lengths. For non-basename
entries these two values are the start and end addresses of the rnglist entry. If and only if
debug_addr_unavailable returns zero. For basename entries these two values are
both the basename address. For end-of-list entries neither value means anything.

If the entrynum is out of range, DW_DLV_NO_ENTRY is returned.

At present DW_DLV_ERROR is never returned, but callers should not assume that will
aw ays be true.

Rev 3.17 7 November 2020 - 206 -

- 207 -

6.28.1.4 dwarf_get_rnglists_entry_fields()

int dwarf_get_rnglists_entry_fields(
Dwarf_Rnglists_Head head,
Dwarf_Unsigned entrynum,
unsigned *entrylen,
unsigned *code,
Dwarf_Unsigned *raw1,
Dwarf_Unsigned *raw2,
Dwarf_Unsigned *cooked1,
Dwarf_Unsigned *cooked2,
Dwarf_Error *err)

This the same as dwarf_get_rnglists_entry_fields_a() except this is
missing the debug_addr_unavailable argument so it’s impossible for callers to
know that the cooked values are not calculated. Do not use this function.

6.28.1.5 dwarf_dealloc_rnglists_head()

int dwarf_dealloc_rnglists_head(Dwarf_Rnglists_Head /*head*/);

This frees the storage allocated by the dwarf_rnglists_get_rle_head() call
that created the Dwarf_Rnglists_Head pointer.

It only returns DW_DLV_OK.

6.28.2 Getting raw .debug_rnglists entries

This set of interfaces is to read the (entire) .debug_rnglists section without
reference to any DIE. As such these can only present the raw data from the file. There is
no way in these interfaces to get actual addresses. These might be of interest if you want
to know exactly what the compiler output in the .debug_rnglists section.
"dwarfdump ----print-raw-rnglists" (try adding -v or -vvv) makes these calls.

Here is an example using all the following calls.

example_rngl

Figure 44. Examplev dwarf_get_ranges_a()

Rev 3.17 7 November 2020 - 207 -

- 208 -

int example_raw_rnglist(Dwarf_Debug dbg,Dwarf_Error *error)
{

Dwarf_Unsigned count = 0;
int res = 0;
Dwarf_Unsigned i = 0;

res = dwarf_load_rnglists(dbg,&count,error);
if (res != DW_DLV_OK) {

return res;
}
for(i =0 ; i < count ; ++i) {

Dwarf_Unsigned header_offset = 0;
Dwarf_Small offset_size = 0;
Dwarf_Small extension_size = 0;
unsigned version = 0; /* 5 */
Dwarf_Small address_size = 0;
Dwarf_Small segment_selector_size = 0;
Dwarf_Unsigned offset_entry_count = 0;
Dwarf_Unsigned offset_of_offset_array = 0;
Dwarf_Unsigned offset_of_first_rangeentry = 0;
Dwarf_Unsigned offset_past_last_rangeentry = 0;

res = dwarf_get_rnglist_context_basics(dbg,i,
&header_offset,&offset_size,&extension_size,
&version,&address_size,&segment_selector_size,
&offset_entry_count,&offset_of_offset_array,
&offset_of_first_rangeentry,
&offset_past_last_rangeentry,error);

if (res != DW_DLV_OK) {
return res;

}
{

Dwarf_Unsigned e = 0;
unsigned colmax = 4;
unsigned col = 0;
Dwarf_Unsigned global_offset_of_value = 0;

for (; e < offset_entry_count; ++e) {
Dwarf_Unsigned value = 0;
int resc = 0;

resc = dwarf_get_rnglist_offset_index_value(dbg,
i,e,&value,
&global_offset_of_value,error);

if (resc != DW_DLV_OK) {
return resc;

Rev 3.17 7 November 2020 - 208 -

- 209 -

}
/* Do something */
col++;
if (col == colmax) {

col = 0;
}

}

}
{

Dwarf_Unsigned curoffset = offset_of_first_rangeentry;
Dwarf_Unsigned endoffset = offset_past_last_rangeentry;
int rese = 0;
Dwarf_Unsigned ct = 0;

for (; curoffset < endoffset; ++ct) {
unsigned entrylen = 0;
unsigned code = 0;
Dwarf_Unsigned v1 = 0;
Dwarf_Unsigned v2 = 0;
rese = dwarf_get_rnglist_rle(dbg,i,

curoffset,endoffset,
&entrylen,
&code,&v1,&v2,error);

if (rese != DW_DLV_OK) {
return rese;

}
curoffset += entrylen;
if (curoffset > endoffset) {

return DW_DLV_ERROR;
}

}
}

}
return DW_DLV_OK;

}

6.28.2.1 dwarf_load_rnglists()

int dwarf_load_rnglists(
Dwarf_Debug dbg,
Dwarf_Unsigned *rnglists_count,
Dwarf_Error *error)

On a successful call to dwarf_load_rnglists() the function returns DW_DLV_OK,

Rev 3.17 7 November 2020 - 209 -

- 210 -

sets *rnglists_count (if and only if rnglists_count is non-null) to the number
of distinct section contents that exist. A small amount of data for each Range Line Table
is recorded in dbg as a side effect. Normally libdwarf will have already called this, but if
an application never requests any .debug_info data the section might not be loaded.
If the section is loaded this returns very quickly and will set *rnglists_count just as
described in this paragraph.

If there is no .debug_rnglists section in the object file this function returns
DW_DLV_NO_ENTRY.

If something is malformed it returns DW_DLV_ERROR and sets *error to the
applicable error pointer describgin the problem.

There is no dealloc call. Calling dwarf_finish() releases the modest amount of
memory recorded for this section as a side effect.

6.28.2.2 dwarf_get_rnglist_context_basics()

int dwarf_get_rnglist_context_basics(Dwarf_Debug dbg,
Dwarf_Unsigned context_index,
Dwarf_Unsigned * header_offset,
Dwarf_Small * offset_size,
Dwarf_Small * extension_size,
unsigned * version, /* 5 */
Dwarf_Small * address_size,
Dwarf_Small * segment_selector_size,
Dwarf_Unsigned * offset_entry_count,
Dwarf_Unsigned * offset_of_offset_array,
Dwarf_Unsigned * offset_of_first_rangeentry,
Dwarf_Unsigned * offset_past_last_rangeentry,
Dwarf_Error * /*err*/);

On success this returns DW_DLV_OK and returns values through the pointer arguments
(other than dbg or error)

A call to dwarf_load_rnglists() that suceeds gets you the count of contexts and
dwarf_get_rnglist_context_basics() for any "i >=0 and i < count" gets you
the context values relevant to .debug_rnglists.

Any of the pointer-arguments for returning context values can be passed in as 0 (in which
case they will be skipped).

You will want *offset_entry_count so you can call
dwarf_get_rnglist_offset_index_value() usefully.

If the context_index passed in is out of range the function returns
DW_DLV_NO_ENTRY

At the present time DW_DLV_ERROR is never returned.

Rev 3.17 7 November 2020 - 210 -

- 211 -

6.28.2.3 dwarf_get_rnglist_offset_index_value()

int dwarf_get_rnglist_offset_index_value(Dwarf_Debug dbg,
Dwarf_Unsigned context_index,
Dwarf_Unsigned offsetentry_index,
Dwarf_Unsigned * offset_value_out,
Dwarf_Unsigned * global_offset_value_out,
Dwarf_Error *error)

On success dwarf_get_rnglist_offset_index_value() returns
DW_DLV_OK, sets * offset_value_out to the value in the Range List Table offset
array, and sets * global_offset_value_out to the section offset (in
.debug_addr) of the offset value.

Pass in context_index exactly as the same field passed to
dwarf_get_rnglist_context_basics().

Pass in offset_entry_index based on the return field offset_entry_count
from dwarf_get_rnglist_context_basics(), meaning for that
context_index an offset_entry_index >=0 and < offset_entry_count.

Pass in offset_entry_count exactly as the same field passed to
dwarf_get_rnglist_context_basics().

If one of the indexes passed in is out of range DW_DLV_NO_ENTRY will be returned and
no return arguments touched.

If there is some corruption of DWARF5 data then DW_DLV_ERROR might be returned
and *error set to the error details.

6.28.2.4 dwarf_get_rnglist_rle()

int dwarf_get_rnglist_rle(
Dwarf_Debug dbg,
Dwarf_Unsigned contextnumber,
Dwarf_Unsigned entry_offset,
Dwarf_Unsigned endoffset,
unsigned *entrylen,
unsigned *entry_kind,
Dwarf_Unsigned *entry_operand1,
Dwarf_Unsigned *entry_operand2,
Dwarf_Error *error)

On success it returns a single DW_RLE* record (see dwarf.h) fields.

contextnumber is the number of the current rnglist context.

entry_offset is the section offset (section-global offset) of the next record.

endoffset is one past the last entry in this rle context.

Rev 3.17 7 November 2020 - 211 -

- 212 -

*entrylen returns the length in the .debug_rnglists section of the particular record
returned. It’s used to increment to the next record within this rnglist context.

entrykind returns is the DW_RLE number.

Some record kinds have 1 or 0 operands, most have two operands (the records describing
ranges).

If the contextnumber is out of range it will return DW_DLV_NO_ENTRY.

If the .debug_rnglists section is malformed or the entry_offset is incorrect it
may return DW_DLV_ERROR.

6.29 Ranges Operations DWARF3,4 (.debug_ranges)

These functions provide information about the address ranges indicated by a
DW_AT_ranges attribute (the ranges are recorded in the .debug_ranges section) of
a DIE. These functions apply to DWARF3 and DWARF4. Each call of
dwarf_get_ranges_a() or dwarf_get_ranges() returns a an array of
Dwarf_Ranges structs, each of which represents a single ranges entry. The struct is
defined in libdwarf.h.

New in DWARF3, for DWARF3, and DWARF4 the section contains just ranges. The
ranges are referenced by DW_AT_ranges attributes in various DIEs.

For DWARF5 the section requires that each group of ranges has a header and the
compilation unit may have a DW_AT_ranges_base attribute that must be added to the
DW_AT_ranges attribute value to get the true ranges offset.

(A compiler generating DW_AT_ranges_base will add a relocation for that attribute
value but will not have to make the DW_AT_ranges attributes relocatable and will thus
save space in the object (ie, .o) file and link time.)

6.29.1 dwarf_get_ranges_section_name()

int dwarf_get_ranges_section_name(Dwarf_Debug dbg,
const char ** sec_name,
Dwarf_Error *error)

*dwarf_get_ranges_section_name() retrieves the object file section name of
the applicable ranges section. This is useful for applications wanting to print the name,
but of course the object section name is not really a part of the DWARF information.
Most applications will probably not call this function. It can be called at any time after
the Dwarf_Debug initialization is done.

If the function succeeds, *sec_name is set to a pointer to a string with the object
section name and the function returns DW_DLV_OK. Do not free the string whose pointer
is returned. For non-Elf objects it is possible the string pointer returned will be NULL or
will point to an empty string. It is up to the calling application to recognize this

Rev 3.17 7 November 2020 - 212 -

- 213 -

possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_ENTRY.

If there is an internal error detected the function returns DW_DLV_ERROR and sets the
*error pointer.

6.29.2 dwarf_get_ranges()

This is the original call and it will work fine when all compilation units have the same
address_size. There is no die argument to this original version of the function. Other
arguments (and deallocation) match the use of dwarf_get_ranges_b() and
dwarf_get_ranges_a().

6.29.3 dwarf_get_ranges_a()

This is the same as dwarf_get_ranges_b() except it is missing the
finaloffset pointer argument, so when reading DWARF4 split-dwarf GNU
extension DIEs it’s not possible to know the final offset of the ranges, but few
applications will care..

int dwarf_get_ranges_a(
Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Die die,
Dwarf_Ranges **ranges,
Dwarf_Signed * returned_ranges_count,
Dwarf_Unsigned * returned_byte_count,
Dwarf_Error *error)

Though missing finaloffset this function works properly and is usable on and
DWARF2,3,4 objects.

6.29.4 dwarf_get_ranges_b()

int dwarf_get_ranges_b(
Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Die die,
Dwarf_Off *finaloffset,
Dwarf_Ranges **ranges,
Dwarf_Signed * returned_ranges_count,
Dwarf_Unsigned * returned_byte_count,
Dwarf_Error *error)

The function dwarf_get_ranges_b() returns DW_DLV_OK and sets
*returned_ranges_count to the count of the number of address ranges in the

Rev 3.17 7 November 2020 - 213 -

- 214 -

group of ranges in the .debug_ranges section where the DW_AT_ranges attribute gives
offset offset. This function is new as of 10 September 2020.

DWARF4 GNU split-dwarf extension ONLY: With a .dwp object and the tied
(executable,a.out) involved the actual .debug_ranges offset is determined from the
DW_AT_GNU_ranges_base from the tied file and the offset from DW_AT_ranges in
the .dwp object and returned through the finaloffset pointer. If finaloffset
pointer is null the function ignores it.

If there is no use of the GNU split-dwarf extension to DWARF4 the finaloffset
value returned is identical to the offset passed in. If the pointer is null it is ignored by
the function.

This function is normally used when one has a DIE with the DW_AT_ranges attribute
(whose value is the offset needed). The ranges thus apply to the DIE involved.

See also dwarf_get_aranges(),

The offset argument should be the value of a DW_AT_ranges attribute of a
Debugging Information Entry.

The die argument should be the value of a Dwarf_Die pointer of a Dwarf_Die with
the attribute containing this range set offset. Because each compilation unit has its own
address_size field this argument is necessary to to correctly read ranges. (Most
executables have the same address_size in every compilation unit, but some ABIs allow
multiple address sized in an executable). If a NULL pointer is passed in libdwarf
assumes a single address_size is appropriate for all ranges records.

On success, The call sets *ranges to point to a block of Dwarf_Ranges structs, one
for each address range. If the *returned_byte_count pointer is passed as non-
NULL the number of bytes that the returned ranges were taken from is returned through
the pointer (for example if the returned_ranges_count is 2 and the pointer-size is 4, then
returned_byte_count will be 8). If the *returned_byte_count pointer is passed as
NULL the parameter is ignored. The *returned_byte_count is only of use to
certain dumper applications, most applications will not use it. The finaloffset
pointer is only of use to certain dumper applications, and if null is passed the function
ignores the argument.

On error the function returns DW_DLV_ERROR.

It returns DW_DLV_NO_ENTRY if there is no .debug_ranges section or if offset
is past the end of the .debug_ranges section.

Figure 45. Examplev dwarf_get_ranges_b()

Rev 3.17 7 November 2020 - 214 -

- 215 -

void examplev(Dwarf_Debug dbg,Dwarf_Unsigned offset,Dwarf_Die die)
{

Dwarf_Signed count = 0;
Dwarf_Ranges *ranges = 0;
Dwarf_Unsigned bytes = 0;
Dwarf_Error error = 0;
Dwarf_Off finaloffset = 0;
int res = 0;
res = dwarf_get_ranges_b(dbg,offset,die,

&finaloffset, &ranges,&count,&bytes,&error);
if (res == DW_DLV_OK) {

Dwarf_Signed i;
for(i = 0; i < count; ++i) {

Dwarf_Ranges *cur = ranges+i;
/* Use cur. */
functionusingrange(cur);

}
dwarf_ranges_dealloc(dbg,ranges,count);

}
}

6.29.5 dwarf_ranges_dealloc()

int dwarf_ranges_dealloc(
Dwarf_Debug dbg,
Dwarf_Ranges *ranges,
Dwarf_Signed range_count,
);

The function dwarf_ranges_dealloc() takes as input a pointer to a block of
Dwarf_Ranges array and the number of structures in the block. It frees all the data in
the array of structures.

6.30 Gdb Index operations

These functions get access to the fast lookup tables defined by gdb and gcc and stored in
the .gdb_index section. The section is of sufficient complexity that a number of
function interfaces are needed. For additional information see
"https://sourceware.org/gdb/onlinedocs/gdb/" "Index-Section-Format.html#Index-
Section-Format". (We split the url to two pieces so it can fit on the printed page join the
pieces to make a usable url).

Rev 3.17 7 November 2020 - 215 -

- 216 -

6.30.1 dwarf_gdbindex_header()

int dwarf_gdbindex_header(Dwarf_Debug dbg,
Dwarf_Gdbindex * gdbindexptr,
Dwarf_Unsigned * version,
Dwarf_Unsigned * cu_list_offset,
Dwarf_Unsigned * types_cu_list_offset,
Dwarf_Unsigned * address_area_offset,
Dwarf_Unsigned * symbol_table_offset,
Dwarf_Unsigned * constant_pool_offset,
Dwarf_Unsigned * section_size,
Dwarf_Unsigned * unused_reserved,
const char ** section_name,
Dwarf_Error * error);

The function dwarf_gdbindex_header() takes as input a pointer to a
Dwarf_Debug structure and returns fields through various pointers.

If the function returns DW_DLV_NO_ENTRY there is no .gdb_index section and none of
the return-pointer argument values are set.

If the function returns DW_DLV_ERROR error is set to indicate the specific error, but
no other return-pointer arguments are touched.

If successful, the function returns DW_DLV_OK and other values are set. The other
values are set as follows:

The field *gdbindexptr is set to an opaque pointer to a libdwarf_internal structure
used as an argument to other .gdbindex functions below.

The remaining fields are set to values that are mostly of interest to a pretty-printer
application. See the detailed layout specification for specifics. The values returned are
recorded in the Dwarf_Gdbindex opaque structure for the other gdbindex functions
documented below.

The field *version is set to the version of the gdb index header (2)..

The field *cu_list_offset is set to the offset (in the .gdb_index section) of the cu-
list.

The field *types_cu_list_offset is set to the offset (in the .gdb_index section)
of the types-list.

The field *address_area_offset is set to the offset (in the .gdb_index section) of
the address area.

The field *symbol_table_offset is set to the offset (in the .gdb_index section) of
the symbol table.

The field *constant_pool_offset is set to the offset (in the .gdb_index section)
of the constant pool.

The field *section_size is set to the length of the .gdb_index section.

Rev 3.17 7 November 2020 - 216 -

- 217 -

The field *unused_reserved is set to zero.

The field *section_name is set to the Elf object file section name (.gdb_index). If a
non-Elf object file has such a section the value set might be NULL or might point to an
empty string (NUL terminated), so code to account for NULL or empty.

The field *error is not set.

Here we show a use of the set of cu_list functions (using all the functions in one example
makes it rather too long).

Figure 46. Examplew dwarf_get_gdbindex_header()

Rev 3.17 7 November 2020 - 217 -

- 218 -

void examplew(Dwarf_Debug dbg
{

Dwarf_Gdbindex gindexptr = 0;
Dwarf_Unsigned version = 0;
Dwarf_Unsigned cu_list_offset = 0;
Dwarf_Unsigned types_cu_list_offset = 0;
Dwarf_Unsigned address_area_offset = 0;
Dwarf_Unsigned symbol_table_offset = 0;
Dwarf_Unsigned constant_pool_offset = 0;
Dwarf_Unsigned section_size = 0;
Dwarf_Unsigned reserved = 0;
Dwarf_Error error = 0;
const char * section_name = 0;
int res = 0;
res = dwarf_gdbindex_header(dbg,&gindexptr,

&version,&cu_list_offset, &types_cu_list_offset,
&address_area_offset,&symbol_table_offset,
&constant_pool_offset, §ion_size,
&reserved,§ion_name,&error);

if (res == DW_DLV_NO_ENTRY) {
return;

} else if (res == DW_DLV_ERROR) {
return;

}
{

/* do something with the data */
Dwarf_Unsigned length = 0;
Dwarf_Unsigned typeslength = 0;
Dwarf_Unsigned i = 0;
res = dwarf_gdbindex_culist_array(gindexptr,

&length,&error);
/* Example actions. */
if (res == DW_DLV_OK) {

for(i = 0; i < length; ++i) {
Dwarf_Unsigned cuoffset = 0;
res = dwarf_gdbindex_culist_entry(gindexptr,

i,&cuoffset,&culength,&error);
if (res == DW_DLV_OK) {

/* Do something with cuoffset, culength */
}

}
}
res = dwarf_gdbindex_types_culist_array(gindexptr,

&typeslength,&error);
if (res == DW_DLV_OK) {

for(i = 0; i < typeslength; ++i) {

Rev 3.17 7 November 2020 - 218 -

- 219 -

Dwarf_Unsigned cuoffset = 0;
Dwarf_Unsigned tuoffset = 0;
Dwarf_Unsigned culength = 0;
Dwarf_Unsigned type_signature = 0;
res = dwarf_gdbindex_types_culist_entry(gindexptr,

i,&cuoffset,&tuoffset,&type_signature,&error);
if (res == DW_DLV_OK) {

/* Do something with cuoffset etc. */
}

}
}
dwarf_gdbindex_free(gindexptr);

}
}

6.30.2 dwarf_gdbindex_culist_array()

int dwarf_gdbindex_culist_array(Dwarf_Gdbindex gdbindexptr,
Dwarf_Unsigned * list_length,
Dwarf_Error * error);

The function dwarf_gdbindex_culist_array() takes as input valid
Dwarf_Gdbindex pointer.

While currently only DW_DLV_OK is returned one should test for
DW_DLV_NO_ENTRY and DW_DLV_ERROR and do something sensible if either is
returned.

If successful, the function returns DW_DLV_OK and returns the number of entries in the
culist through thelist_length pointer.

6.30.3 dwarf_gdbindex_culist_entry()

int dwarf_gdbindex_culist_entry(Dwarf_Gdbindex gdbindexptr,
Dwarf_Unsigned entryindex,
Dwarf_Unsigned * cu_offset,
Dwarf_Unsigned * cu_length,
Dwarf_Error * error);

The function dwarf_gdbindex_culist_entry() takes as input valid
Dwarf_Gdbindex pointer and an index into the culist array. Valid indexes are 0 through
list_length -1 .

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns

Rev 3.17 7 November 2020 - 219 -

- 220 -

DW_DLV_ERROR there is an error of some kind and the error is indicated by the vale
returned through the error pointer.

On success it returns DW_DLV_OK and returns the cu_offset (the section global
offset of the CU in .debug_info)) and cu_length (the length of the CU in .debug_info)
values through the pointers.

6.30.4 dwarf_gdbindex_types_culist_array()

int dwarf_gdbindex_types_culist_array(Dwarf_Gdbindex /*gdbindexptr*/,
Dwarf_Unsigned * /*types_list_length*/,
Dwarf_Error * /*error*/);

The function dwarf_gdbindex_types_culist_array() takes as input valid
Dwarf_Gdbindex pointer.

While currently only DW_DLV_OK is returned one should test for
DW_DLV_NO_ENTRY and DW_DLV_ERROR and do something sensible if either is
returned.

If successful, the function returns DW_DLV_OK and returns the number of entries in the
types culist through thelist_length

6.30.5 dwarf_gdbindex_types_culist_entry()

int dwarf_gdbindex_types_culist_entry(
Dwarf_Gdbindex gdbindexptr,
Dwarf_Unsigned entryindex,
Dwarf_Unsigned * cu_offset,
Dwarf_Unsigned * tu_offset,
Dwarf_Unsigned * type_signature,
Dwarf_Error * error);

The function dwarf_gdbindex_types_culist_entry() takes as input valid
Dwarf_Gdbindex pointer and an index into the types culist array. Valid indexes are 0
through types_list_length -1 .

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns
DW_DLV_ERROR there is an error of some kind. and the error is indicated by the value
returned through the error pointer.

On success it returns DW_DLV_OK and returns the tu_offset (the section global
offset of the CU in .debug_types)) and tu_length (the length of the CU in
.debug_types) values through the pointers. It also returns the type signature (a 64bit
value) through the type_signature pointer.

Rev 3.17 7 November 2020 - 220 -

- 221 -

6.30.6 dwarf_gdbindex_addressarea()

int dwarf_gdbindex_addressarea(Dwarf_Gdbindex /*gdbindexptr*/,
Dwarf_Unsigned * /*addressarea_list_length*/,
Dwarf_Error * /*error*/);

The function dwarf_addressarea() takes as input valid Dwarf_Gdbindex pointer
and returns the length of the address area through addressarea_list_length.

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns
DW_DLV_ERROR there is an error of some kind. and the error is indicated by the value
returned through the error pointer.

If successful, the function returns DW_DLV_OK and returns the number of entries in the
address area through the addressarea_list_length pointer.

6.30.7 dwarf_gdbindex_addressarea_entry()

int dwarf_gdbindex_addressarea_entry(
Dwarf_Gdbindex gdbindexptr,
Dwarf_Unsigned entryindex,
Dwarf_Unsigned * low_address,
Dwarf_Unsigned * high_address,
Dwarf_Unsigned * cu_index,
Dwarf_Error * error);

The function dwarf_addressarea_entry() takes as input valid Dwarf_Gdbindex
pointer and an index into the address area (valid indexes are zero through
addressarea_list_length - 1.

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns
DW_DLV_ERROR there is an error of some kind. and the error is indicated by the value
returned through the error pointer.

If successful, the function returns DW_DLV_OK and returns The low_address
high_address and cu_index through the pointers.

Given an open Dwarf_Gdbindex one uses the function as follows:

Rev 3.17 7 November 2020 - 221 -

- 222 -

Figure 47. Examplewgdbindex dwarf_gdbindex_addressarea()
void examplewgdbindex(Dwarf_Gdbindex gdbindex)
{

Dwarf_Unsigned list_len = 0;
Dwarf_Unsigned i = 0;
int res = 0;
Dwarf_Error err = 0;

res = dwarf_gdbindex_addressarea(gdbindex, &list_len,&err);
if (res != DW_DLV_OK) {

/* Something wrong, ignore the addressarea */
}
/* Iterate through the address area. */
for(i = 0; i < list_len; i++) {

Dwarf_Unsigned lowpc = 0;
Dwarf_Unsigned highpc = 0;
Dwarf_Unsigned cu_index = 0;
res = dwarf_gdbindex_addressarea_entry(gdbindex,i,

&lowpc,&highpc,
&cu_index,
&err);

if (res != DW_DLV_OK) {
/* Something wrong, ignore the addressarea */
return;

}
/* We have a valid address area entry, do something

with it. */
}

}

6.30.8 dwarf_gdbindex_symboltable_array()

int dwarf_gdbindex_symboltable_array(Dwarf_Gdbindex gdbindexptr,
Dwarf_Unsigned * symtab_list_length,
Dwarf_Error * error);

One can look at the symboltable as a two-level table (with The outer level indexes
through symbol names and the inner level indexes through all the compilation units that
define that symbol (each symbol having a different number of compilation units, this is
not a simple rectangular table).

The function dwarf_gdbindex_symboltable_array() takes as input valid
Dwarf_Gdbindex pointer.

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns
DW_DLV_ERROR there is an error of some kind. and the error is indicated by the value

Rev 3.17 7 November 2020 - 222 -

- 223 -

returned through the error pointer.

If successful, the function returns DW_DLV_OK and returns The
symtab_list_length through the pointer.

Given a valid Dwarf_Gdbindex pointer, one can access the entire symbol table as follows
(using ’return’ here to indicate we are giving up due to a problem while keeping the
example code fairly short):

Rev 3.17 7 November 2020 - 223 -

- 224 -

Figure 48. Examplex dwarf_gdbindex_symboltable_array()
void examplex(Dwarf_Gdbindex gdbindex)
{

Dwarf_Unsigned symtab_list_length = 0;
Dwarf_Unsigned i = 0;
Dwarf_Error err = 0;
int res = 0;

res = dwarf_gdbindex_symboltable_array(gdbindex,
&symtab_list_length,&err);

if (res != DW_DLV_OK) {
return;

}
for(i = 0; i < symtab_list_length; i++) {

Dwarf_Unsigned symnameoffset = 0;
Dwarf_Unsigned cuvecoffset = 0;
Dwarf_Unsigned cuvec_len = 0;
Dwarf_Unsigned ii = 0;
const char *name = 0;
res = dwarf_gdbindex_symboltable_entry(gdbindex,i,

&symnameoffset,&cuvecoffset,
&err);

if (res != DW_DLV_OK) {
return;

}
res = dwarf_gdbindex_string_by_offset(gdbindex,

symnameoffset,&name,&err);
if(res != DW_DLV_OK) {

return;
}
res = dwarf_gdbindex_cuvector_length(gdbindex,

cuvecoffset,&cuvec_len,&err);
if(res != DW_DLV_OK) {

return;
}
for(ii = 0; ii < cuvec_len; ++ii) {

Dwarf_Unsigned attributes = 0;
Dwarf_Unsigned cu_index = 0;
Dwarf_Unsigned reserved1 = 0;
Dwarf_Unsigned symbol_kind = 0;
Dwarf_Unsigned is_static = 0;

res = dwarf_gdbindex_cuvector_inner_attributes(
gdbindex,cuvecoffset,ii,
&attributes,&err);

if(res != DW_DLV_OK) {

Rev 3.17 7 November 2020 - 224 -

- 225 -

return;
}
/* ’attributes’ is a value with various internal

fields so we expand the fields. */
res = dwarf_gdbindex_cuvector_instance_expand_value(gdbindex,

attributes, &cu_index,&reserved1,&symbol_kind, &is_static,
&err);

if(res != DW_DLV_OK) {
return;

}
/* Do something with the attributes. */

}
}

}

6.30.9 dwarf_gdbindex_symboltable_entry()

int dwarf_gdbindex_symboltable_entry(
Dwarf_Gdbindex gdbindexptr,
Dwarf_Unsigned entryindex,
Dwarf_Unsigned * string_offset,
Dwarf_Unsigned * cu_vector_offset,
Dwarf_Error * error);

The function dwarf_gdbindex_symboltable_entry() takes as input valid
Dwarf_Gdbindex pointer and an entry index(valid index values being zero through
symtab_list_length -1).

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns
DW_DLV_ERROR there is an error of some kind. and the error is indicated by the value
returned through the error pointer.

If successful, the function returns DW_DLV_OK and returns The string_offset and
cu_vector_offset through the pointers. See the example above which uses this
function.

6.30.10 dwarf_gdbindex_cuvector_length()

int dwarf_gdbindex_cuvector_length(
Dwarf_Gdbindex gdbindex,
Dwarf_Unsigned cuvector_offset,
Dwarf_Unsigned * innercount,
Dwarf_Error * error);

The function dwarf_gdbindex_cuvector_length() takes as input valid
Dwarf_Gdbindex pointer and an a cu vector offset.

Rev 3.17 7 November 2020 - 225 -

- 226 -

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns
DW_DLV_ERROR there is an error of some kind. and the error is indicated by the value
returned through the error pointer.

If successful, the function returns DW_DLV_OK and returns the inner_count
through the pointer. The inner_count is the number of compilation unit vectors for
this array of vectors. See the example above which uses this function.

6.30.11 dwarf_gdbindex_cuvector_inner_attributes()

int dwarf_gdbindex_cuvector_inner_attributes(
Dwarf_Gdbindex gdbindex,
Dwarf_Unsigned cuvector_offset,
Dwarf_Unsigned innerindex,
/* The attr_value is a field of bits. For expanded version

use dwarf_gdbindex_cuvector_expand_value() */
Dwarf_Unsigned * attr_value,
Dwarf_Error * error);

The function dwarf_gdbindex_cuvector_inner_attributes() takes as
input valid Dwarf_Gdbindex pointer and an a cu vector offset and a inner_index
(valid inner_index values are zero through inner_count - 1.

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns
DW_DLV_ERROR there is an error of some kind. and the error is indicated by the value
returned through the error pointer.

If successful, the function returns DW_DLV_OK and returns The attr_value through
the pointer. The attr_value is actually composed of several fields, see the next
function which expands the value. See the example above which uses this function.

6.30.12 dwarf_gdbindex_cuvector_instance_expand_value()

int dwarf_gdbindex_cuvector_instance_expand_value(
Dwarf_Gdbindex gdbindex,
Dwarf_Unsigned attr_value,
Dwarf_Unsigned * cu_index,
Dwarf_Unsigned * reserved1,
Dwarf_Unsigned * symbol_kind,
Dwarf_Unsigned * is_static,
Dwarf_Error * error);

The function dwarf_gdbindex_cuvector_instance_expand_value() takes
as input valid Dwarf_Gdbindex pointer and an attr_value.

Rev 3.17 7 November 2020 - 226 -

- 227 -

If it returns DW_DLV_NO_ENTRY there is a coding error. If it returns
DW_DLV_ERROR there is an error of some kind. and the error is indicated by the value
returned through the error pointer.

If successful, the function returns DW_DLV_OK and returns the following values
through the pointers:

The cu_index field is the index in the applicable CU list of a compilation unit. For the
purpose of indexing the CU list and the types CU list form a single array so the
cu_index can be indicating either list.

The symbol_kind field is a small integer with the symbol kind(zero is reserved, one is
a type, 2 is a variable or enum value, etc).

The reserved1 field should have the value zero and is the value of a bit field defined
as reserved for future use.

The is_static field is zero if the CU indexed is global and one if the CU indexed is
static.

See the example above which uses this function.

6.30.13 dwarf_gdbindex_string_by_offset()

int dwarf_gdbindex_string_by_offset(
Dwarf_Gdbindex gdbindexptr,
Dwarf_Unsigned stringoffset,
const char ** string_ptr,
Dwarf_Error * error);

The function dwarf_gdbindex_string_by_offset() takes as input valid
Dwarf_Gdbindex pointer and a stringoffset If it returns DW_DLV_NO_ENTRY
there is a coding error. If it returns DW_DLV_ERROR there is an error of some kind. and
the error is indicated by the value returned through the error pointer.

If it succeeds, the call returns a pointer to a string from the ’constant pool’ through the
string_ptr. The string pointed to must never be free()d.

See the example above which uses this function.

6.31 GNU linking (.gnu_debuglink, .note.gnu.build-id) operations

This section deals with the way GNU tools allow creation of DWARF separated from the
executable file involved. See https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-
Files.html for more information. The function here is new in September 2019, revised in
October 2020. An example of use follows the description of arguments.

Rev 3.17 7 November 2020 - 227 -

- 228 -

These functions are concerned with finding DWARF data in a companion file. There is
no Split-Dwarf involved, this is a different way of splitting DWARF out of an executable
or shared object.. It never applies to simple .o object files, only to executable objects (or
shared libraries).

6.31.1 dwarf_gnu_debuglink()

int dwarf_gnu_debuglink(Dwarf_Debug dbg,
char **debuglink_path_returned,
unsigned char **crc_returned,
char **debuglink_fullpath_returned,
unsigned *buildid_type returned,
char **builid_returned,
unsigned *builid_length_returned,
char ***paths_returned,
unsigned *paths_count_returned,
Dwarf_Error* error);

This returns DW_DLV_NO_ENTRY if there is neither a .gnu_debuglink object-file
section nor a .note.gnu.build-id section in the object file.

If there is an error it returns DW_DLV_ERROR and sets *error to point to the error
value.

On success it returns DW_DLV_OK and sets the fields through the pointers as described
below. Two fields must be free()d to avoid a memory leak. None of the other fields
should be freed.

If there is a .gnu_debuglink section the first four fields will be set.

*debuglink_path_returned points to the null-terminated string in the section.
Do not free this. The bytes are in the object itself and the pointer is invalid once
dwarf_finish() is run on the dbg.

*crc_returned points to a 4-byte CRC value. The bytes pointed to are not a string.

*debuglink_fullpath_returned points to a full pathname derived from the
*debuglink_fullpath_returned string. And then
*debuglink_fullpath_strlen is set to the length of
*debuglink_fullpath_returned just as strlen() would count the length.
Callers must free() *debuglink_fullpath_returned.

If there is a .note.gnu.build-id section the buildid fields will be set through the
pointers.

*buildid_type_returned will be set to the value 3.

*buildid_owner_name_returned will be set to point to the null-terminated string
which will be "GNU". Do not free() this. The bytes are in the object itself and the

Rev 3.17 7 November 2020 - 228 -

- 229 -

pointer is invalid once dwarf_finish() is run on the dbg.

*buildid_returned will be set to point to the group of bytes of length
*buildid_length_returned. This is not a string and is not null-terminated. It is
normally a 20-byte field to be used in its ascii-hex form. Do not free() this. The bytes
are in the object itself and the pointer is invalid once dwarf_finish() is run on the dbg.

If *paths_returned is passed as NULL then no paths calculation will be made and
*paths_count_returned is not referenced by libdwarf.

If *paths_returned is passed in non-NULL then *paths_returned and
*paths_count_returned provide an array of pointers-to-strings (with the actual
strings following the array) and the count of the pointers in the array. When the strings
are no longer needed free() *paths_returned. The number of paths returned will
depend on which (of the two) sections exist and on how many global paths have been set
by dwarf_add_debuglink_global_path(). and defined by the rules described
in the web page mentioned above. The default global path is "/usr/lib/debug" and that is
set by libdwarf as paths_returned[0].

An example of calling this function follows

Rev 3.17 7 November 2020 - 229 -

- 230 -

Figure 49. Example debuglink ()
void exampledebuglink(Dwarf_Debug dbg)
{

int res = 0;
char *debuglink_path = 0;
unsigned char *crc = 0;
char *debuglink_fullpath = 0;
unsigned debuglink_fullpath_strlen = 0;
unsigned buildid_type = 0;
char * buildidowner_name = 0;
unsigned char *buildid_itself = 0;
unsigned buildid_length = 0;
char ** paths = 0;
unsigned paths_count = 0;
Dwarf_Error error = 0;
unsigned i = 0;

/* This is just an example if one knows
of another place full-DWARF objects
may be. "/usr/lib/debug" is automatically
set. */

res = dwarf_add_debuglink_global_path(dbg,
"/some/path/debug",&error);

if (res != DW_DLV_OK) {
/* Something is wrong, but we’ll ignore

that. */
}

res = dwarf_gnu_debuglink(dbg,
&debuglink_path,
&crc,
&debuglink_fullpath,
&debuglink_fullpath_strlen,
&buildid_type,
&buildidowner_name,
&buildid_itself,
&buildid_length,
&paths,
&paths_count,
&error);

if (res == DW_DLV_ERROR) {
/* Do something with the error */
return;

}
if (res == DW_DLV_NO_ENTRY) {

/* No such sections as .note.gnu.build-id

Rev 3.17 7 November 2020 - 230 -

- 231 -

or .gnu_debuglink */
return;

}
if (debuglink_fullpath_strlen) {

printf("debuglink path: %s\n",debuglink_path);
printf("crc length : %u crc: ",4);
for (i = 0; i < 4;++i) {

printf("%02x",crc[i]);
}
printf("\n");
printf("debuglink fullpath: %s\n",debuglink_fullpath);

}
if(buildid_length) {

printf("buildid type : %u\n",buildid_type);
printf("Buildid owner : %s\n",buildidowner_name);
printf("buildid byte count: %u\n",buildid_length);
printf(" ");
/* buildid_length should be 20. */
for (i = 0; i < buildid_length;++i) {

printf("%02x",buildid_itself[i]);
}
printf("\n");

}
printf("Possible paths count %u\n",paths_count);
for (; i < paths_count; ++i){

printf("%2u: %s\n",i,paths[i]);
}
free(debuglink_fullpath);
free(paths);
return;

}

6.31.2 dwarf_add_debuglink_global_path()

int dwarf_add_debuglink_global_path(Dwarf_Debug dbg,
const char * path,
Dwarf_Error* error);

This is unlikely to return DW_DLV_ERROR unless one passes in a NULL instead of an
open Dwarf_Debug. It cannot return DW_DLV_NO_ENTRY.

On success it returns DW_DLV_OK after adding the path to the global list recorded in the
Dwarf_Debug.

Rev 3.17 7 November 2020 - 231 -

- 232 -

6.31.3 dwarf_crc32()

int dwarf_crc32(Dwarf_Debug dbg,
unsigned char * crc_buf,
Dwarf_Error* error);

The caller must pass the address of a 4 byte array of unsigned char in crc_buf. And
the Dwarf_Debug must have been opened with dwarf_init_path() to be useful. If
the executable is named executable the file containing most of the f(CWDWARF
data would often be executable.debug. This is normally
called from libdwarf code on opening executable and libdwarf
may call this function on executable.debug. Library users
could would likely never call it.

On success it returns DW_DLV_OK and sets the 4 bytes pointed
to by crc_buf to the calculated CRC value.

If it returns DW_DLV_NO_ENTRY or DW_DLV_ERROR somethine went
wrong and crc_buf is not touched.

The function was added October 2020.

6.31.4 dwarf_basic_crc32()

unsigned int dwarf_crc32(const unsigned char *buf,
int len,
unsigned int init);

This computes the crc on buf of length len with initial value init. See libdwarf
source for the details of calling this. It is not likely useful for library uses to call this
directly.

The function was added October 2020.

6.32 DWARF5 .debug_sup section access

The .debug_sup section is new in DWARF5 and this function returns all the data in that
section. The section enables splitting off some DWARF5 information to a separate file,
enabling a debugger to find the file, and ensuring the file found actually matches. See the
DWARF5 standard.

6.32.1 dwarf_get_debug_sup()

Rev 3.17 7 November 2020 - 232 -

- 233 -

int dwarf_get_debug_sup(Dwarf_Debug dbg,
Dwarf_Half * version,
Dwarf_Small * is_supplementary,
char ** filename,
Dwarf_Unsigned * checksum_len,
Dwarf_Small ** checksum,
Dwarf_Error* error);

On success it returns DW_DLV_OK and sets values through the pointer fields (other than
error). If any of the pointer fields are NULL those pointers are ignored. There is
nothing resulting from this call to free or dealloc.

The pointer values are as follows:

version is defined to be 2, and any other value is an error (libdwarf does not indicate
an error).

is_supplementary is a flag and only 0 or 1 should be present. and any other value
is an error, though libdwarf does not indicate an error.

filename is a null-terminated string.

checksum_len is the length, in bytes, of the data checksum points to.

If there is no .debug_sup section or if that is empty DW_DLV_NO_ENTRY is returned.

On error (for example, if a field runs off the end of the section due to data corruption)
DW_DLV_ERROR is returned and *error returns the error information as is standard in
libdwarf.

6.33 Debug Fission (.debug_tu_index, .debug_cu_index) operations

We name things "xu" as these sections have the same format so we let "x" stand for either
section. The DWARF5 standard refers to Split Dwarf while libdwarf tends to refer to this
as "Fission".

These functions get access to the index functions needed to access and print the contents
of an object file which is an aggregate of .dwo objects. These sections are implemented
in gcc/gdb and are DWARF5. The idea is that much debug information can be separated
off into individual .dwo Elf objects and then aggregated simply into a single .dwp object
so the executable need not have the complete debug information in it at runtime yet allow
good debugging.

For additional information, see "https://gcc.gnu.org/wiki/DebugFissionDWP",
"https://gcc.gnu.org/wiki/DebugFission", and
"http://www.bayarea.net/˜cary/dwarf/Accelerated%20Access%20Diagram.png" and as of
17 February 2017, the DWARF5 standard.

There are FORM access functions related to Debug Fission (Split Dwarf). See
dwarf_formaddr() and dwarf_get_debug_addr_index() and
dwarf_get_debug_str_index().

Rev 3.17 7 November 2020 - 233 -

- 234 -

The FORM with the hash value (for a reference to a type unit) is
DW_FORM_ref_sig8.

In a compilation unit of Debug Fission object (or a .dwp Package FIle) DW_AT_dwo_id
the hash is expected to be DW_FORM_data8.

The DWARF5 standard defines the hash as an 8 byte value which we could use
Dwarf_Unsigned. Instead (and mostly for type safety) we define the value as a
structure whose type name is Dwarf_Sig8.

To look up a name in the hash (to find which CU(s) it exists in). use
dwarf_get_debugfission_for_key()fP, defined below.

The second group of interfaces here beginning with
dwarf_get_xu_index_header() are useful if one wants to print
a .debug_tu_index or .debug_cu_index section.

To access DIE, macro, etc information the support is built
into DIE, Macro, etc operations so applications usually
won’t need to use these operations at all.

6.33.1 Dwarf_Debug_Fission_Per_CU

#define DW_FISSION_SECT_COUNT 12
struct Dwarf_Debug_Fission_Per_CU_s {

/* Do not free the string. It contains "cu" or "tu". */
/* If this is not set (ie, not a CU/TU in DWP Package File)

then pcu_type will be NULL. */
const char * pcu_type;
/* pcu_index is the index (range 1 to N)

into the tu/cu table of offsets and the table
of sizes. 1 to N as the zero index is reserved
for special purposes. Not a value one
actually needs. */

Dwarf_Unsigned pcu_index;
Dwarf_Sig8 pcu_hash; /* 8 byte */
/* [0] has offset and size 0.

[1]-[8] are DW_SECT_* indexes and the
values are the offset and size
of the respective section contribution
of a single .dwo object. When pcu_size[n] is
zero the corresponding section is not present. */

Dwarf_Unsigned pcu_offset[DW_FISSION_SECT_COUNT];
Dwarf_Unsigned pcu_size[DW_FISSION_SECT_COUNT];
Dwarf_Unsigned unused1;
Dwarf_Unsigned unused2;

};

Rev 3.17 7 November 2020 - 234 -

- 235 -

The structure is used to return data to callers with the data from either .debug_tu_index or
.debug_cu_index that is applicable to a single compilation unit or type unit.

Callers to the applicable functions (see below) should allocate the structure and zero all
the bytes in it. The structure has a few fields that are presently unused. These are
reserved for future use since it is impossible to alter the structure without breaking binary
compatibility.

6.33.2 dwarf_die_from_hash_signature()

int dwarf_die_from_hash_signature(Dwarf_Debug dbg,
Dwarf_Sig8 * hash_sig,
const char * sig_type,
Dwarf_Die* returned_die,
Dwarf_Error* error);

The function dwarf_die_from_hash_signature() is the most direct way to go
from the hash data from a DW_FORM_ref_sig8 or a DW_AT_dwo_id (form
DW_FORM_data8) to a DIE from a .dwp package file or a .dwo object file (.dwo access
not supported yet).

The caller passes in dbg which should be Dwarf_Debug open/initialized on a .dwp
package file (or a .dwo object file).

The caller also passes in hash_sig, a pointer to the hash signature for which the caller
wishes to find a DIE.

The caller also passes in sig_type which must contain either "tu" (identifying the
hash referring to a type unit) or "cu" (identifying the hash as referring to a compilation
unit).

On success the function returns DW_DLV_OK and sets *returned_die to be a pointer
to a valid DIE for the compilation unit or type unit. If the type is "tu" the DIE returned is
the specific type DIE that the hash refers to. If the type is "cu" the DIE returned is the
compilation unit DIE of the compilation unit referred to.

When appropriate the caller should free the space of the returned DIE by a call something
like

dwarf_dealloc(dbg,die,DW_DLA_DIE);

If there is no DWP Package File section or the hash cannot be found the function returns
DW_DLV_NO_ENTRY and leaves returned_die untouched. Only .dwo objects and
.dwp package files have the package file index sections.

If there is an error of some sort the function returns DW_DLV_ERROR, leaves
returned_die untouched, and sets *error to indicate the precise error encountered.

Rev 3.17 7 November 2020 - 235 -

- 236 -

6.33.3 dwarf_get_debugfission_for_die()

int dwarf_get_debugfission_for_die(Dwarf_Die die,
Dwarf_Debug_Fission_Per_CU * percu_out,
Dwarf_Error * error);

The function dwarf_get_debugfission_for_die() returns the debug fission
for the compilation unit the DIE is a part of. Any DIE in the compilation (or type) unit
will get the same result.

On a call to this function ensure the pointed-to space is fully initialized.

On success the function returns DW_DLV_OK and fills in the fields of *percu_out for
which it has data.

If there is no DWP Package File section the function returns DW_DLV_NO_ENTRY and
leaves *percu_out untouched. Only .dwp package files have the package file index
sections.

If there is an error of some sort the function returns DW_DLV_ERROR, leaves
*percu_out untouched, and sets *error to indicate the precise error encountered.

6.33.4 dwarf_get_debugfission_for_key()

int dwarf_get_debugfission_for_key(Dwarf_Debug dbg,
Dwarf_Sig8 * key,
const char * key_type ,
Dwarf_Debug_Fission_Per_CU * percu_out,
Dwarf_Error * error);

The function dwarf_get_debugfission_for_key() returns the debug fission
data for the compilation unit in a .dwp package file.

If there is no DWP Package File section the function returns DW_DLV_NO_ENTRY and
leaves *percu_out untouched. Only .dwp package files have the package file index
sections.

If there is an error of some sort the function returns DW_DLV_ERROR, leaves
*percu_out untouched, and sets *error to indicate the precise error encountered.

6.33.5 dwarf_get_xu_index_header()

Rev 3.17 7 November 2020 - 236 -

- 237 -

int dwarf_get_xu_index_header(Dwarf_Debug dbg,
const char * section_type, /* "tu" or "cu" */
Dwarf_Xu_Index_Header * xuhdr,
Dwarf_Unsigned * version_number,
Dwarf_Unsigned * offsets_count /* L*/,
Dwarf_Unsigned * units_count /* N*/,
Dwarf_Unsigned * hash_slots_count /* M*/,
const char ** sect_name,
Dwarf_Error * err);

The function dwarf_get_xu_index_header() takes as input a valid
Dwarf_Debug pointer and an section_type value, which must one of the strings tu
or cu.

It returns DW_DLV_NO_ENTRY if the section requested is not in the object file.

It returns DW_DLV_ERROR there is an error of some kind. and the error is indicated by
the value returned through the error pointer.

If successful, the function returns DW_DLV_OK and returns the following values
through the pointers:

The xuhdr field is a pointer usable in other operations (see below).

The version_number field is a the index version number. For gcc before DWARF5
the version number is 2. For DWARF5 the version number is 5.

The offsets_count field is a the number of columns in the table of section offsets.
Sometimes known as L.

The units_count field is a the number of compilation units or type units in the index.
Sometimes known as N.

The hash_slots_count field is a the number of slots in the hash table. Sometimes
known as M.

The sect_name field is the name of the section in the object file. Because non-Elf
objects may not use section names callers must recognize that the sect_name may be set
to NULL (zero) or to point to the empty string and this is not considered an error.

An example of initializing and disposing of a Dwarf_Xu_Index_Header follows.

Rev 3.17 7 November 2020 - 237 -

- 238 -

Figure 50. Exampley dwarf_get_xu_index_header()
void exampley(Dwarf_Debug dbg, const char *type)
{

/* type is "tu" or "cu" */
int res = 0;
Dwarf_Xu_Index_Header xuhdr = 0;
Dwarf_Unsigned version_number = 0;
Dwarf_Unsigned offsets_count = 0; /*L */
Dwarf_Unsigned units_count = 0; /* M */
Dwarf_Unsigned hash_slots_count = 0; /* N */
Dwarf_Error err = 0;
const char * section_name = 0;

res = dwarf_get_xu_index_header(dbg,
type,
&xuhdr,
&version_number,
&offsets_count,
&units_count,
&hash_slots_count,
§ion_name,
&err);

if (res == DW_DLV_NO_ENTRY) {
/* No such section. */
return;

}
if (res == DW_DLV_ERROR) {

/* Something wrong. */
return;

}
/* Do something with the xuhdr here . */
dwarf_xu_header_free(xuhdr);

}

6.33.6 dwarf_get_xu_index_section_type()

int dwarf_get_xu_index_section_type(
Dwarf_Xu_Index_Header xuhdr,
const char ** typename,
const char ** sectionname,
Dwarf_Error * error);

The function dwarf_get_xu_section_type() takes as input a valid
Dwarf_Xu_Index_Header. It is only useful when one already as an open xuhdr
but one does not know if this is a type unit or compilation unit index section.

If it returns DW_DLV_NO_ENTRY something is wrong (should never happen). If it
returns DW_DLV_ERROR something is wrong and the error field is set to indicate a

Rev 3.17 7 November 2020 - 238 -

- 239 -

specific error.

If successful, the function returns DW_DLV_OK and sets the following arguments
through the pointers:

typename is set to the string tu or cu to indicate the index is of a type unit or a
compilation unit, respectively.

sectionname is set to name of the object file section. Because non-Elf objects may
not use section names callers must recognize that the sect_name may be set to NULL
(zero) or to point to the empty string and this is not considered an error.

Neither string should be free()d.

6.33.7 dwarf_get_xu_header_free()

void dwarf_xu_header_free(Dwarf_Xu_Index_Header xuhdr);

The function dwarf_get_xu_header_free() takes as input a valid
Dwarf_Xu_Index_Header and frees all the special data allocated for this access
type. Once called, any pointers returned by use of the xuhdr should be considered stale
and unusable.

6.33.8 dwarf_get_xu_hash_entry()

int dwarf_get_xu_hash_entry(
Dwarf_Xu_Index_Header xuhdr,
Dwarf_Unsigned index,
Dwarf_Sig8 * hash_value,
Dwarf_Unsigned * index_to_sections,
Dwarf_Error * error);

The function dwarf_get_xu_hash_entry() takes as input a valid
Dwarf_Xu_Index_Header and an index of a hash slot entry (valid hash slot index
values are zero (0) through hash_slots_count -1 (M-1)).

If it returns DW_DLV_NO_ENTRY something is wrong

If it returns DW_DLV_ERROR something is wrong and the error field is set to indicate
a specific error.

If successful, the function returns DW_DLV_OK and sets the following arguments
through the pointers:

hash_value is set to the 64bit hash of of the symbol name.

index_to_sections is set to the index into offset-size tables of this hash entry.

If both hash_value and index_to_sections are zero (0) then the hash slot is
unused. index_to_sections is used in calls to the function
dwarf_get_xu_section_offset() as the row_index.

Rev 3.17 7 November 2020 - 239 -

- 240 -

An example of use follows.

Figure 51. Examplez dwarf_get_xu_hash_entry()
void examplez(Dwarf_Xu_Index_Header xuhdr,

Dwarf_Unsigned hash_slots_count)
{

/* hash_slots_count returned by
dwarf_get_xu_index_header(), see above. */

static Dwarf_Sig8 zerohashval;

Dwarf_Error err = 0;
Dwarf_Unsigned h = 0;

for(h = 0; h < hash_slots_count; h++) {
Dwarf_Sig8 hashval;
Dwarf_Unsigned index = 0;
int res = 0;

res = dwarf_get_xu_hash_entry(xuhdr,h,
&hashval,&index,&err);

if (res == DW_DLV_ERROR) {
/* Oops. hash_slots_count wrong. */
return;

} else if (res == DW_DLV_NO_ENTRY) {
/* Impossible */
return;

} else if (!memcmp(&hashval,&zerohashval,
sizeof(Dwarf_Sig8))
&& index == 0) {
/* An unused hash slot */
continue;

}
/* Here, hashval and index (a row index into

offsets and lengths) are valid.
But the row to be passed into
various functions here is index-1. */

}
}

6.33.9 dwarf_get_xu_section_names()

Rev 3.17 7 November 2020 - 240 -

- 241 -

int dwarf_get_xu_section_names(
Dwarf_Xu_Index_Header xuhdr,
Dwarf_Unsigned column_index,
Dwarf_Unsigned* number,
const char ** name,
Dwarf_Error * err);

The function dwarf_get_xu_section_names() takes as input a valid
Dwarf_Xu_Index_Header and a column_index of a hash slot entry (valid
column_index values are zero (0) through offsets_count -1 (L-1)).

If it returns DW_DLV_NO_ENTRY something is wrong

If it returns DW_DLV_ERROR something is wrong and the error field is set to indicate
a specific error.

If successful, the function returns DW_DLV_OK and sets the following arguments
through the pointers:

number is set to a number identifying which section this column applies to. For
example, if the value is DW_SECT_INFO (1) the column came from a .debug_info.dwo
section. See the table of DW_SECT_ identifiers and assigned numbers in DWARF5.

name is set to the applicable spelling of the section identifier, for example
DW_SECT_INFO.

6.33.10 dwarf_get_xu_section_offset()

int dwarf_get_xu_section_offset(
Dwarf_Xu_Index_Header xuhdr,
Dwarf_Unsigned row_index,
Dwarf_Unsigned column_index,
Dwarf_Unsigned* sec_offset,
Dwarf_Unsigned* sec_size,
Dwarf_Error * error);

The function dwarf_get_xu_section_offset() takes as input a valid
Dwarf_Xu_Index_Header and a row_index (see
dwarf_get_xu_hash_entry() above) and a column_index.

Valid row_index values are zero (0) through units_count-1 (N) but one uses
dwarf_get_xu_hash_entry() (above) to get row index and it returns a 1-origin
index as that is what the DWARF5 standard specifies. Since a zero index from
dwarf_get_xu_hash_entry() means this is not an actual entry such must be
skipped.

Hence it makes (some) sense to subtract one making a zero-origin as that is the sense of
all but the first row of the offsets table.

Valid column_index values are zero (0) through offsets_count -1 (L-1).

Rev 3.17 7 November 2020 - 241 -

- 242 -

If it returns DW_DLV_NO_ENTRY something is wrong.

If it returns DW_DLV_ERROR something is wrong and the error field is set to indicate
a specific error.

If successful, the function returns DW_DLV_OK and sets the following arguments
through the pointers:

sec_offset, (base offset) is set to the base offset of the initial compilation-unit-
header section taken from a .dwo object. The base offset is the data from a single
section of a .dwo object.

sec_size is set to the length of the original section taken from a .dwo object. This is
the length in the applicable section in the .dwp over which the base offset applies.

An example of use of dwarf_get_xu_section_names() and
dwarf_get_xu_section_offset() follows.

Rev 3.17 7 November 2020 - 242 -

- 243 -

Figure 52. Exampleza dwarf_get_xu_section_names()
void exampleza(Dwarf_Xu_Index_Header xuhdr,

Dwarf_Unsigned offsets_count, Dwarf_Unsigned index)
{

Dwarf_Error err = 0;
Dwarf_Unsigned col = 0;
/* We use ’offsets_count’ returned by

a dwarf_get_xu_index_header() call.
We use ’index’ returned by a
dwarf_get_xu_hash_entry() call. */

for (col = 0; col < offsets_count; col++) {
Dwarf_Unsigned off = 0;
Dwarf_Unsigned len = 0;
const char * name = 0;
Dwarf_Unsigned num = 0;
int res = 0;

res = dwarf_get_xu_section_names(xuhdr,
col,&num,&name,&err);

if (res != DW_DLV_OK) {
break;

}
res = dwarf_get_xu_section_offset(xuhdr,

index-1,col,&off,&len,&err);
if (res != DW_DLV_OK) {

break;
}
/* Here we have the DW_SECT_ name and number

and the base offset and length of the
section data applicable to the hash
that got us here.
Use the values.*/

}
}

6.34 TAG ATTR etc names as strings

These functions turn a value into a string. So applications wanting the string
"DW_TAG_compile_unit" given the value 0x11 (the value defined for this TAG) can do
so easily.

The general form is

Rev 3.17 7 November 2020 - 243 -

- 244 -

int dwarf_get_<something>_name(
unsigned value,
char **s_out,
);

If the value passed in is known, the function returns DW_DLV_OK and places a pointer
to the appropriate string into *s_out. The string is in static storage and applications
must never free the string. If the value is not known, DW_DLV_NO_ENTRY is returned
and *s_out is not set. DW_DLV_ERROR is never returned.

Libdwarf generates these functions at libdwarf build time by reading dwarf.h.

All these follow this pattern rigidly, so the details of each are not repeated for each
function.

The choice of ’unsigned’ for the value type argument (the code value) argument is
somewhat arbitrary, ’int’ could have been used.

The library simply assumes the value passed in is applicable. So, for example, passing a
TA G value code to dwarf_get_ACCESS_name() is a coding error which libdwarf
will process as if it was an accessibility code value. Examples of bad and good usage are:

Figure 53. Examplezb dwarf_get_TAG_name()
void examplezb(void)
{

const char * out = 0;
int res = 0;

/* The following is wrong, do not do it! */
res = dwarf_get_ACCESS_name(DW_TAG_entry_point,&out);
/* Nothing one does here with ’res’ or ’out’

is meaningful. */

/* The following is meaningful.*/
res = dwarf_get_TAG_name(DW_TAG_entry_point,&out);
if(res == DW_DLV_OK) {

/* Here ’out’ is a pointer one can use which
points to the string "DW_TAG_entry_point". */

} else {
/* Here ’out’ has not been touched, it is

uninitialized. Do not use it. */
}

}

Rev 3.17 7 November 2020 - 244 -

- 245 -

6.34.1 dwarf_get_ACCESS_name()

Returns an accessibility code name through the s_out pointer.

6.34.2 dwarf_get_AT_name()

Returns an attribute code name through the s_out pointer.

6.34.3 dwarf_get_ATE_name()

Returns a base type encoding name through the s_out pointer.

6.34.4 dwarf_get_ADDR_name()

Returns an address type encoding name through the s_out pointer. As of this writing
only DW_ADDR_none is defined in dwarf.h.

6.34.5 dwarf_get_ATCF_name()

Returns a SUN code flag encoding name through the s_out pointer. This code flag is
entirely a DWARF extension.

6.34.6 dwarf_get_CHILDREN_name()

Returns a child determination name (which is seen in the abbreviations section data)
through the s_out pointer. The only value this recognizes for a ’yes’ value is 1. As a
flag value this is not quite correct (any non-zero value means yes) but dealing with this is
left up to client code (normally compilers really do emit a value of 1 for a flag).

6.34.7 dwarf_get_children_name()

Returns a child determination name through the s_out pointer, though this version is
really a libdwarf artifact. The standard function is dwarf_get_CHILDREN_name()
which appears just above. As a flag value this is not quite correct (any non-zero value
means yes) but dealing with this is left up to client code (normally compilers really do
emit a value of 1 for a flag).

6.34.8 dwarf_get_CC_name()

Returns a calling convention case code name through the s_out pointer.

6.34.9 dwarf_get_CFA_name()

Returns a call frame information instruction name through the s_out pointer.

6.34.10 dwarf_get_DS_name()

Returns a decimal sign code name through the s_out pointer.

6.34.11 dwarf_get_DSC_name()

Returns a discriminant descriptor code name through the s_out pointer.

6.34.12 dwarf_get_EH_name()

Returns a GNU exception header code name through the s_out pointer.

Rev 3.17 7 November 2020 - 245 -

- 246 -

6.34.13 dwarf_get_END_name()

Returns an endian code name through the s_out pointer.

6.34.14 dwarf_get_FORM_name()

Returns an form code name through the s_out pointer.

6.34.15 dwarf_get_FRAME_name()

Returns a frame code name through the s_out pointer. These are dependent on the
particular ABI, so unless the dwarf.h used to generate libdwarf matches your ABI
these names are unlikely to be very useful and certainly won’t be entirely appropriate.

6.34.16 dwarf_get_ID_name()

Returns an identifier case code name through the s_out pointer.

6.34.17 dwarf_get_INL_name()

Returns an inline code name through the s_out pointer.

6.34.18 dwarf_get_LANG_name()

Returns a language code name through the s_out pointer.

6.34.19 dwarf_get_LLE_name()

Returns a split-dwarf loclist code name through the s_out pointer.

6.34.20 dwarf_get_LNE_name()

Returns a line table extended opcode code name through the s_out pointer.

6.34.21 dwarf_get_LNS_name()

Returns a line table standard opcode code name through the s_out pointer.

6.34.22 dwarf_get_MACINFO_name()

Returns a macro information macinfo code name through the s_out pointer.

6.34.23 dwarf_get_MACRO_name()

Returns a DWARF5 macro information macro code name through the s_out pointer.

6.34.24 dwarf_get_OP_name()

Returns a DWARF expression operation code name through the s_out pointer.

6.34.25 dwarf_get_ORD_name()

Returns an array ordering code name through the s_out pointer.

6.34.26 dwarf_get_TAG_name()

Returns a TA G name through the s_out pointer.

Rev 3.17 7 November 2020 - 246 -

- 247 -

6.34.27 dwarf_get_VIRTUALITY_name()

Returns a virtuality code name through the s_out pointer.

6.34.28 dwarf_get_VIS_name()

Returns a visibility code name through the s_out pointer.

6.35 Section Operations

In checking DWARF in linkonce sections for correctness it has been found useful to have
certain section-oriented operations when processing object files. Normally these
operations are not needed or useful in a fully-linked executable or shared library.

While the code is written with Elf sections in mind, it is quite possible to process non-Elf
objects with code that implements certain function pointers (see struct
Dwarf_Obj_Access_interface_s).

So far no one with such non-elf code has come forward to open-source it.

6.35.1 dwarf_get_section_count()

int dwarf_get_section_count(
Dwarf_Debug dbg)

Returns a count of the number of object sections found.

If there is an incomplete or damaged dbg passed in this can return -1;

6.35.2 dwarf_get_section_info_by_name()

int dwarf_get_section_info_by_name(
const char *section_name,
Dwarf_Addr *section_addr,
Dwarf_Unsigned *section_size,
Dwarf_Error *error)

The function dwarf_get_section_info_by_name() returns DW_DLV_OK if the
section given by section_name was seen by libdwarf. On success it sets
*section_addr to the virtual address assigned to the section by the linker or compiler
and *section_size to the size of the object section.

It returns DW_DLV_ERROR on error.

Rev 3.17 7 November 2020 - 247 -

- 248 -

6.35.3 dwarf_get_section_info_by_index()

int dwarf_get_section_info_by_index(
int section_index,
const char **section_name,
Dwarf_Addr *section_addr,
Dwarf_Unsigned *section_size,
Dwarf_Error *error)

The function dwarf_get_section_info_by_index() returns DW_DLV_OK if
the section given by section_index was seen by libdwarf. *section_addr to the
virtual address assigned to the section by the linker or compiler and *section_size
to the size of the object section.

No free or deallocate of information returned should be done by callers.

6.36 Utility Operations

These functions aid in the management of errors encountered when using functions in the
libdwarf library and releasing memory allocated as a result of a libdwarf operation.

For clients that wish to encode LEB numbers two interfaces are provided to the producer
code’s internal LEB function.

6.36.1 dwarf_errno()

Dwarf_Unsigned dwarf_errno(
Dwarf_Error error)

The function dwarf_errno() returns the error number corresponding to the error
specified by error.

6.36.2 dwarf_errmsg()

const char* dwarf_errmsg(
Dwarf_Error error)

The function dwarf_errmsg() returns a pointer to a null-terminated error message
string corresponding to the error specified by error. The string should not be
deallocated using dwarf_dealloc().

The string should be considered to be a temporary string. That is, the returned pointer
may become stale if you do libdwarf calls on the Dwarf_Debug instance other than
dwarf_errmsg() or dwarf_errno(). So copy the errmsg string (or print it) but
do not depend on the pointer remaining valid past other libdwarf calls to the
Dwarf_Debug instance that detected an error.

Rev 3.17 7 November 2020 - 248 -

- 249 -

6.36.3 dwarf_errmsg_by_number()

const char* dwarf_errmsg_by_number(
Dwarf_Unside errcode)

The function dwarf_errmsg_by_number() returns a pointer to a null-terminated
error message string corresponding to the error number specified by errcode. The
string should not be deallocated or freed. If the errcode is too large for the table of
static error strings a string reflecting that fact is returned.

For some places in the code a Dwarf_Error() is inconvenient and this function lets
dwarfdump report better information in those cases.

Function new December 19, 2018.

6.36.4 dwarf_get_endian_copy_function()

void (*dwarf_get_endian_copy_function(Dwarf_Debug /*dbg*/))
(void *, const void * /*src*/, unsigned long /*srclen*/)

When reader client code wants to extract endian-dependent integers from dwarf and the
existing interfaces won’t do that (for example in printing frame instructions as done by
dwarfdump) dwarf_get_endian_copy_function helps by returning the proper
copy function needed, the one libdwarf itself uses. The client code needs a bit of glue to
finish the job, as demonstrated by the ASNAR macro in dwarfdump/print_frames.c

On success this returns a pointer to the correct copy function.

On failure it returns the null pointer. It’s up to the client code to decide how to deal with
the situation. In no reasonable case will the null pointer be returned.

New December 2018.

6.36.5 dwarf_get_harmless_error_list()

int dwarf_get_harmless_error_list(Dwarf_Debug dbg,
unsigned count,
const char ** errmsg_ptrs_array,
unsigned * newerr_count);

The harmless errors are not denoted by error returns from the other libdwarf functions.
Instead, this function returns strings of any harmless errors that have been seen in the
current object. Clients never need call this, but if a client wishes to report any such errors
it may call.

Only a fixed number of harmless errors are recorded. It is a circular list, so if more than
the current maximum is encountered older harmless error messages are lost.

The caller passes in a pointer to an array of pointer-to-char as the argument
errmsg_ptrs_array. The caller must provide this array, libdwarf does not provide

Rev 3.17 7 November 2020 - 249 -

- 250 -

it. The caller need not initialize the array elements.

The caller passes in the number of elements of the array of pointer-to-char thru count.
Since the

If there are no unreported harmless errors the function returns DW_DLV_NO_ENTRY and
the function arguments are ignored. Otherwise the function returns DW_DLV_OK and
uses the arguments.

libdwarf assigns error strings to the errmsg_ptrs_array. The MININUM(count-1,
number of messages recorded) pointers are assigned to the array. The array is terminated
with a NULL pointer. (That is, one array entry is reserved for a NULL pointer). So if
count is 5 up to 4 strings may be returned through the array, and one array entry is set to
NULL.

Because the list is circular and messages may have been dropped the function also returns
the actual error count of harmless errors encountered through newerr_count (unless
the argument is NULL, in which case it is ignored).

Each call to this function resets the circular error buffer and the error count. So think of
this call as reporting harmless errors since the last call to it.

The pointers returned through errmsg_ptrs_array are only valid till the next call to
libdwarf. Do not save the pointers, they become invalid. Copy the strings if you wish to
save them.

Calling this function neither allocates any space in memory nor frees any space in
memory.

6.36.6 dwarf_insert_harmless_error()

void dwarf_insert_harmless_error(Dwarf_Debug dbg,
char * newerror);

This function is used to test dwarf_get_harmless_error_list. It simply adds a
harmless error string. There is little reason client code should use this function. It exists
so that the harmless error functions can be easily tested for correctness and leaks.

6.36.7 dwarf_set_harmless_error_list_size()

unsigned dwarf_set_harmless_error_list_size(Dwarf_Debug dbg,
unsigned maxcount)

dwarf_set_harmless_error_list_size returns the number of harmless error
strings the library is currently set to hold. If maxcount is non-zero the library changes
the maximum it will record to be maxcount.

Rev 3.17 7 November 2020 - 250 -

- 251 -

It is extremely unwise to make maxcount large because libdwarf allocates space for
maxcount strings immediately.

The set of errors enumerated in Figure 8 below were defined in Dwarf 1. These errors are
not used by the libdwarf implementation for Dwarf 2 or later.

SYMBOLIC NAME DESCRIPTION

DW_DLE_NE No error (0)
DW_DLE_VMM Version of DWARF information newer

than libdwarf
DW_DLE_MAP Memory map failure
DW_DLE_LEE Propagation of libelf error
DW_DLE_NDS No debug section
DW_DLE_NLS No line section
DW_DLE_ID Requested information not associated

with descriptor
DW_DLE_IOF I/O failure
DW_DLE_MAF Memory allocation failure
DW_DLE_IA Invalid argument
DW_DLE_MDE Mangled debugging entry
DW_DLE_MLE Mangled line number entry
DW_DLE_FNO File descriptor does not refer

to an open file
DW_DLE_FNR File is not a regular file
DW_DLE_FWA File is opened with wrong access
DW_DLE_NOB File is not an object file
DW_DLE_MOF Mangled object file header
DW_DLE_EOLL End of location list entries
DW_DLE_NOLL No location list section
DW_DLE_BADOFF Invalid offset
DW_DLE_EOS End of section
DW_DLE_ATRUNC Abbreviations section appears

truncated
DW_DLE_BADBITC Address size passed to

dwarf bad

Figure 54. Dwarf Error Codes

The set of errors returned by Libdwarf functions is listed below. The list does
lengthen: the ones listed here are far from a complete list. Some of the errors are SGI
specific. See libdwarf/dwarf_errmsg_list.h for the complete list.

Rev 3.17 7 November 2020 - 251 -

- 252 -

SYMBOLIC NAME (description not shown here)

DW_DLE_DBG_ALLOC
DW_DLE_FSTAT_ERROR
DW_DLE_FSTAT_MODE_ERROR
DW_DLE_INIT_ACCESS_WRONG
DW_DLE_ELF_BEGIN_ERROR
DW_DLE_ELF_GETEHDR_ERROR
DW_DLE_ELF_GETSHDR_ERROR
DW_DLE_ELF_STRPTR_ERROR
DW_DLE_DEBUG_INFO_DUPLICATE
DW_DLE_DEBUG_INFO_NULL
DW_DLE_DEBUG_ABBREV_DUPLICATE
DW_DLE_DEBUG_ABBREV_NULL
DW_DLE_DEBUG_ARANGES_DUPLICATE
DW_DLE_DEBUG_ARANGES_NULL
DW_DLE_DEBUG_LINE_DUPLICATE
DW_DLE_DEBUG_LINE_NULL
DW_DLE_DEBUG_LOC_DUPLICATE
DW_DLE_DEBUG_LOC_NULL
DW_DLE_DEBUG_MACINFO_DUPLICATE
DW_DLE_DEBUG_MACINFO_NULL
DW_DLE_DEBUG_PUBNAMES_DUPLICATE
DW_DLE_DEBUG_PUBNAMES_NULL
DW_DLE_DEBUG_STR_DUPLICATE
DW_DLE_DEBUG_STR_NULL
DW_DLE_CU_LENGTH_ERROR
DW_DLE_VERSION_STAMP_ERROR
DW_DLE_ABBREV_OFFSET_ERROR
DW_DLE_ADDRESS_SIZE_ERROR
DW_DLE_DEBUG_INFO_PTR_NULL
DW_DLE_DIE_NULL
DW_DLE_STRING_OFFSET_BAD
DW_DLE_DEBUG_LINE_LENGTH_BAD
DW_DLE_LINE_PROLOG_LENGTH_BAD
DW_DLE_LINE_NUM_OPERANDS_BAD
DW_DLE_LINE_SET_ADDR_ERROR

Figure 55. Dwarf 2 and later Error Codes

This list of errors is not complete; additional errors have been added. Some of the above
errors may be unused. Errors may not have the same meaning in different releases. Since
most error codes are returned from only one place (or a very small number of places) in
the source it is normally very useful to simply search the libdwarf source to find out
where a particular error code is generated. See libdwarf/dwarf_errmsg_list.h
for the complete message set with short descriptions.

Rev 3.17 7 November 2020 - 252 -

- 253 -

6.36.8 dwarf_dealloc()

void dwarf_dealloc(
Dwarf_Debug dbg,
void* space,
Dwarf_Unsigned type)

The function dwarf_dealloc frees the dynamic storage pointed to by space, and
allocated to the given Dwarf_Debug. The argument type is an integer code that
specifies the allocation type of the region pointed to by the space. Refer to section 4 for
details on libdwarf memory management.

6.36.9 dwarf_encode_leb128()

int dwarf_encode_leb128(Dwarf_Unsigned val,
int * nbytes,
char * space,
int splen);

The function dwarf_encode_leb128 encodes the value val in the caller-provided
buffer that space points to. The caller-provided buffer must be at least splen bytes
long.

The function returns DW_DLV_OK if the encoding succeeds. If splen is too small to
encode the value, DW_DLV_ERROR will be returned.

If the call succeeds, the number of bytes of space that are used in the encoding are
returned through the pointer nbytes

6.36.10 dwarf_encode_signed_leb128()

int dwarf_encode_signed_leb128(Dwarf_Signed val,
int * nbytes,
char * space,
int splen);

The function dwarf_encode_signed_leb128 is the same as
dwarf_encode_leb128 except that the argument val is signed.

6.37 Finding Memory Leaks

If you are using dwarf_set_de_alloc_flag(0) to turn off the garbage collection
dwarfinish() does and you find memory leaks there are a couple specific tools
provided that may ease the process of tracking down the errors you have made.

Rev 3.17 7 November 2020 - 253 -

- 254 -

This chapter is new as of 26 March 2020.

6.37.1 Compiling libdwarf -DDEBUG=1

The first tool is to build libdwarf with options -g -O0 -DDEBUG=1. The -O0 is
simply to help a debugger, valgrind or other too identify source lines accurately. The
-DDEBUG=1 Turns on printf statements in dwarf_alloc.c and dwarf_error.c that emit
lines like

libdwarfdetector ALLOC ret 0x... size
libdwarfdetector DEALLOC ret 0x... size
libdwarfdetector ALLOC creating error string
libdwarfdetector DEALLOC Now destruct error string

at each point of particular interest.

The first two relate to actually malloc/free. The ret 0x... will be a hex address of the
pointer yuur code is presented for allocations inside libdwarf.

The second two relate to allocation/free of a string in Dwarf_Error record when an error
record with variable descriptive error information is being built/freed.

6.37.2 Making use of the output of -DDEBUG=1

A small Python 3 program (alloctrack.py) in the libdwarf regressiontests on
SourceForge.net will read through a file with libdwarfdetector lines and report on
mismatches in the alloc/dealloc counts for each memory-blob libdwarf created. All other
lines are skipped.

This has been found very useful.

Since the regression tests are large and you won’t otherwise need them a copy of
alloctrack.py follows so you need not clone the test code.

Rev 3.17 7 November 2020 - 254 -

- 255 -

#!/usr/bin/env python3
Copyright 2020 David Anderson
This Python code is hereby placed into the public domain
for use by anyone for any purpose.

Useful for finding the needle of
a single leaking allocation
in the haystack of all the libdwarfdetector
lines libdwarf can emit if compiled -DDEBUG=1
import sys
import os

def trackallocs(fi,valdict):
line = 0
while True:

line = int(line)+1
try:

recf = fi.readline()
except EOFError:

break
if len(recf) < 1:

eof
break

rec = recf.strip()
if rec.find("ALLOC") != -1:
if rec.find("libdwarfdetector ALLOC ret 0x") != -1:

wds = rec.split()
off = wds[3]
if off in valdict:

(allo,deallo) = valdict[off]
if int(allo) == 0:

r = (1,deallo)
valdict[off] = r

else:
print("Duplicate use of ",off,"line",line)
r =(int(allo)+1,deallo)
valdict[off] = r

else:
allo = 1
deallo = 0
r=(allo,deallo)
valdict[off] = r

continue

if rec.find("libdwarfdetector DEALLOC ret 0x") != -1:
wds = rec.split()

Rev 3.17 7 November 2020 - 255 -

- 256 -

off = wds[3]
if off in valdict:

(allo,deallo) = valdict[off]
if int(deallo) == 0:

r = (allo,1)
valdict[off] = r

else:
print("Duplicate use of ",off,"line",line)
r = (allo,int(deallo)+1)
valdict[off] = r

else:
allo = 0
deallo = 1
r=(allo,deallo)
valdict[off] = r

continue

if __name__ == ’__main__’:
if len(sys.argv) > 1:

fname = sys.argv[1]
try:

file = open(fname,"r")
except IOError as message:

print("File could not be opened: ", fname, " ", message)
sys.exit(1)

else:
file = sys.stdin

vals = {}
trackallocs(file,vals)
for s in vals:

(allo,deallo) = vals[s]
if int(allo) != int(deallo):

print("Mismatch on ",s," a vs d: ",allo,deallo)
if int(allo) > 1:

print("Reuse of ",s," a vs d: ",allo,deallo)

Rev 3.17 7 November 2020 - 256 -

- 257 -

Rev 3.17 7 November 2020 - 257 -

CONTENTS

1. INTRODUCTION .. 1
1.1 Copyright ... 1
1.2 Purpose and Scope ... 1
1.3 Document History .. 2
1.4 Definitions .. 2
1.5 Overview .. 2
1.6 Items Changed ... 3
1.7 Items Removed .. 8
1.8 Revision History .. 8

2. Types Definitions ... 9
2.1 General Description ... 9
2.2 Scalar Types ... 9
2.3 Aggregate Types .. 10

2.3.1 Location Record .. 10
2.3.2 Location Description ... 11
2.3.3 Data Block .. 12
2.3.4 Frame Operation Codes: DWARF 2 12
2.3.5 Frame Regtable: DWARF 2 .. 13
2.3.6 Frame Operation Codes: DWARF 3 (for DWARF2 and

later) ... 14
2.3.7 Frame Regtable: DWARF 3 (for DWARF2 and later) 14
2.3.8 Macro Details Record ... 16

2.4 Opaque Types ... 17

3. UTF-8 strings ... 20

4. Error Handling ... 21
4.1 Returned values in the functional interface .. 24

5. Memory Management .. 25
5.1 Read-only Properties .. 26
5.2 Storage Deallocation .. 26

5.2.1 dwarf_dealloc() ... 26
5.2.2 dwarf_dealloc_die() .. 26
5.2.3 dwarf_dealloc_attribute() .. 27
5.2.4 dwarf_dealloc_error() ... 27
5.2.5 Errors Returned from dwarf_init* calls 28
5.2.6 Error DW_DLA error free types ... 31

i

6. Functional Interface .. 33
6.1 Initialization Operations ... 33

6.1.1 dwarf_init_path() .. 33
6.1.2 dwarf_init_path_dl() ... 35
6.1.3 dwarf_init_b() ... 36
6.1.4 dwarf_init() ... 37
6.1.5 dwarf_set_de_alloc_flag() .. 37
6.1.6 Dwarf_Handler function ... 38
6.1.7 dwarf_elf_init_b() [deprecated 2019] 38
6.1.8 dwarf_elf_init() [deprecated 2019] 39
6.1.9 dwarf_get_elf() .. 39
6.1.10 dwarf_set_tied_dbg() .. 39
6.1.11 dwarf_get_tied_dbg() .. 41
6.1.12 dwarf_finish() .. 41
6.1.13 dwarf_set_stringcheck() .. 41
6.1.14 dwarf_set_reloc_application() .. 41
6.1.15 dwarf_record_cmdline_options() .. 42
6.1.16 dwarf_object_init_b() .. 42
6.1.17 dwarf_object_init() .. 43
6.1.18 dwarf_get_real_section_name() .. 43
6.1.19 dwarf_package_version() .. 44

6.2 Object Type Detectors .. 44
6.2.1 dwarf_object_detector_path() ... 44
6.2.2 dwarf_object_detector_fd() ... 46

6.3 Section Group Operations .. 46
6.3.1 dwarf_sec_group_sizes() .. 46
6.3.2 dwarf_sec_group_map() .. 47

6.4 Section size operations ... 50
6.4.1 dwarf_get_section_max_offsets_b() 50
6.4.2 dwarf_get_section_max_offsets() ... 50

6.5 Printf Callbacks .. 51
6.5.1 dwarf_register_printf_callback ... 51
6.5.2 Dwarf_Printf_Callback_Info_s ... 52
6.5.3 dwarf_printf_callback_function_type 52
6.5.4 Example of printf callback use in a C++ application using

libdwarf ... 53
6.6 Debugging Information Entry Delivery Operations 53

6.6.1 dwarf_get_die_section_name() ... 53
6.6.2 dwarf_get_die_section_name_b() ... 54
6.6.3 dwarf_next_cu_header_d() ... 54

ii

6.6.4 dwarf_next_cu_header_c() .. 56
6.6.5 dwarf_next_cu_header_b() ... 57
6.6.6 dwarf_next_cu_header() ... 57
6.6.7 dwarf_siblingof_b() .. 57
6.6.8 dwarf_siblingof() .. 59
6.6.9 dwarf_child() ... 59
6.6.10 dwarf_offdie_b() ... 60
6.6.11 dwarf_offdie() ... 61
6.6.12 dwarf_validate_die_sibling() .. 61

6.7 Debugging Information Entry Query Operations 62
6.7.1 dwarf_get_die_infotypes_flag() .. 62
6.7.2 dwarf_tag() .. 63
6.7.3 dwarf_dieoffset() ... 63
6.7.4 dwarf_addr_form_is_indexed() ... 63
6.7.5 dwarf_debug_addr_index_to_addr() 63
6.7.6 dwarf_die_CU_offset() ... 64
6.7.7 dwarf_die_offsets() ... 64
6.7.8 dwarf_ptr_CU_offset() .. 64
6.7.9 dwarf_CU_dieoffset_given_die() .. 64
6.7.10 dwarf_die_CU_offset_range() .. 66
6.7.11 dwarf_diename() ... 66
6.7.12 dwarf_die_text() .. 66
6.7.13 dwarf_die_abbrev_code() ... 67
6.7.14 dwarf_die_abbrev_children_flag() .. 67
6.7.15 dwarf_die_abbrev_global_offset() .. 67
6.7.16 dwarf_get_version_of_die() .. 68
6.7.17 dwarf_attrlist() .. 68
6.7.18 dwarf_hasattr() .. 69
6.7.19 dwarf_attr() ... 69
6.7.20 dwarf_lowpc() ... 70
6.7.21 dwarf_highpc_b() .. 70
6.7.22 dwarf_highpc() .. 71
6.7.23 dwarf_dietype_offset() .. 71
6.7.24 dwarf_offset_list() ... 71
6.7.25 dwarf_bytesize() .. 72
6.7.26 dwarf_bitsize() .. 72
6.7.27 dwarf_bitoffset() ... 73
6.7.28 dwarf_srclang() ... 73
6.7.29 dwarf_arrayorder() .. 73

6.8 Attribute Queries .. 73

iii

6.8.1 dwarf_hasform() .. 74
6.8.2 dwarf_whatform() ... 74
6.8.3 dwarf_whatform_direct() .. 74
6.8.4 dwarf_whatattr() .. 75
6.8.5 dwarf_formref() .. 75
6.8.6 dwarf_global_formref() .. 75
6.8.7 dwarf_convert_to_global_offset() ... 76
6.8.8 dwarf_formaddr() .. 76
6.8.9 dwarf_get_debug_str_index() ... 77
6.8.10 dwarf_formflag() ... 78
6.8.11 dwarf_formudata() .. 78
6.8.12 dwarf_formsdata() ... 78
6.8.13 dwarf_formblock() .. 79
6.8.14 dwarf_formstring() .. 79
6.8.15 dwarf_formsig8() .. 79
6.8.16 dwarf_formexprloc() ... 80
6.8.17 dwarf_get_form_class() .. 80
6.8.18 dwarf_discr_list() .. 81
6.8.19 dwarf_discr_entry_u() ... 84
6.8.20 dwarf_discr_entry_s() ... 84

6.9 Location List Operations, Raw .debug_loclists 84
6.9.1 dwarf_load_loclists() .. 87
6.9.2 dwarf_get_loclist_context_basics() 88
6.9.3 dwarf_get_loclist_offset_index_value() 89
6.9.4 dwarf_get_loclist_lle() .. 89

6.10 Location List operations .debug_loc & .debug_loclists 90
6.10.1 dwarf_get_loclist_c() .. 90
6.10.2 dwarf_get_locdesc_entry_d() .. 94
6.10.3 dwarf_get_locdesc_entry_c() .. 95
6.10.4 dwarf_get_loclist_head_kind() ... 96
6.10.5 dwarf_get_location_op_value_d() .. 96
6.10.6 dwarf_loclist_from_expr_c() .. 97
6.10.7 dwarf_loc_head_c_dealloc() ... 100
6.10.8 dwarf_loclist_n() ... 100
6.10.9 dwarf_loclist() ... 102
6.10.10 dwarf_loclist_from_expr() .. 103
6.10.11 dwarf_loclist_from_expr_b() .. 104
6.10.12 dwarf_loclist_from_expr_a() .. 104

6.11 Line Number Operations .. 105
6.11.1 Get A Set of Lines (including skeleton line tables) 106

iv

6.11.2 dwarf_srclines_b() .. 106
6.11.3 dwarf_get_line_section_name_from_die() 106
6.11.4 dwarf_srclines_from_linecontext() 107
6.11.5 dwarf_srclines_two_levelfrom_linecontext() 107
6.11.6 dwarf_srclines_dealloc_b() ... 108

6.12 Line Context Details (DWARF5 style) .. 112
6.12.1 dwarf_srclines_table_offset() .. 112
6.12.2 dwarf_srclines_version() ... 112
6.12.3 dwarf_srclines_comp_dir() ... 112
6.12.4 dwarf_srclines_files_indexes() ... 113
6.12.5 dwarf_srclines_files_count() ... 113
6.12.6 dwarf_srclines_files_data_b() ... 113
6.12.7 dwarf_srclines_files_data() ... 114
6.12.8 dwarf_srclines_include_dir_count() 115
6.12.9 dwarf_srclines_include_dir_data() 115
6.12.10 dwarf_srclines_subprog_count() ... 115
6.12.11 dwarf_srclines_subprog_data() ... 115

6.13 Get A Set of Lines (DWARF2,3,4 style) ... 116
6.13.1 dwarf_srclines() .. 116

6.14 Get the set of Source File Names ... 117
6.14.1 dwarf_srcfiles() ... 117

6.15 Get Information About a Single Line Table Line 119
6.15.1 dwarf_linebeginstatement() .. 119
6.15.2 dwarf_lineendsequence() .. 119
6.15.3 dwarf_lineno() ... 120
6.15.4 dwarf_line_srcfileno() ... 120
6.15.5 dwarf_lineaddr() .. 120
6.15.6 dwarf_lineoff() .. 121
6.15.7 dwarf_lineoff_b() .. 121
6.15.8 dwarf_linesrc() .. 121
6.15.9 dwarf_lineblock() .. 122
6.15.10 dwarf_is_addr_set() .. 122
6.15.11 dwarf_prologue_end_etc() .. 123

6.16 Accelerated Access By Name operations .. 123
6.16.1 Fine Tuning Accelerated Access ... 123

6.16.1.1 dwarf_return_empty_pubnames 123
6.16.1.2 dwarf_get_globals_header 124

6.16.2 Accelerated Access Pubnames .. 125
6.16.2.1 dwarf_get_globals() .. 125
6.16.2.2 dwarf_globname() ... 126

v

6.16.2.3 dwarf_global_die_offset() 127
6.16.2.4 dwarf_global_cu_offset() 127
6.16.2.5 dwarf_get_cu_die_offset_given_cu_header_offset() ... 127
6.16.2.6 dwarf_get_cu_die_offset_given_cu_header_offset() ... 128
6.16.2.7 dwarf_global_name_offsets() 128

6.16.3 Accelerated Access Pubtypes ... 129
6.16.3.1 dwarf_get_pubtypes() ... 129
6.16.3.2 dwarf_pubtypename() ... 130
6.16.3.3 dwarf_pubtype_type_die_offset() 130
6.16.3.4 dwarf_pubtype_cu_offset() 131
6.16.3.5 dwarf_pubtype_name_offsets() 131

6.16.4 Accelerated Access Weaknames ... 131
6.16.4.1 dwarf_get_weaks() .. 132
6.16.4.2 dwarf_weakname() .. 133
6.16.4.3 dwarf_weak_cu_offset() .. 134
6.16.4.4 dwarf_weak_name_offsets() 134

6.16.5 Accelerated Access Funcnames .. 134
6.16.5.1 dwarf_get_funcs() ... 135
6.16.5.2 dwarf_funcname() ... 136
6.16.5.3 dwarf_func_die_offset() .. 136
6.16.5.4 dwarf_func_cu_offset() ... 137
6.16.5.5 dwarf_func_name_offsets() 137

6.16.6 Accelerated Access Typenames .. 137
6.16.6.1 dwarf_get_types() ... 137
6.16.6.2 dwarf_typename() ... 139
6.16.6.3 dwarf_type_die_offset() .. 139
6.16.6.4 dwarf_type_cu_offset() ... 140
6.16.6.5 dwarf_type_name_offsets() 140

6.16.7 Accelerated Access varnames ... 140
6.16.7.1 dwarf_get_vars() ... 141
6.16.7.2 dwarf_varname() ... 142
6.16.7.3 dwarf_var_die_offset() .. 142
6.16.7.4 dwarf_var_cu_offset() ... 143
6.16.7.5 dwarf_var_name_offsets() 143

6.17 Names Fast Access (DWARF5) .debug_names 143
6.17.1 dwarf_debugnames_header() .. 143
6.17.2 dwarf_debugnames_sizes() .. 144
6.17.3 dwarf_debugnames_cu_entry() .. 145
6.17.4 dwarf_debugnames_local_tu_entry() 145
6.17.5 dwarf_debugnames_foreign_tu_entry() 146

vi

6.17.6 dwarf_debugnames_bucket() ... 146
6.17.7 dwarf_debugnames_name() ... 146
6.17.8 dwarf_debugnames_abbrev_by_index()" 147
6.17.9 dwarf_debugnames_abbrev_by_code() 147
6.17.10 dwarf_debugnames_form_by_index() 147
6.17.11 dwarf_debugnames_entrypool() .. 147
6.17.12 dwarf_debugnames_entrypool_values() 148

6.18 Names Fast Access .debug_gnu_pubnames 148
6.18.1 dwarf_get_gnu_index_head() ... 148
6.18.2 dwarf_gnu_index_dealloc() .. 149
6.18.3 dwarf_get_gnu_index_block() .. 149
6.18.4 dwarf_get_gnu_index_block_entry() 150

6.19 Macro Information Operations (DWARF4, DWARF5) 151
6.19.1 Getting access ... 151

6.19.1.1 dwarf_get_macro_context() 151
6.19.1.2 dwarf_get_macro_context_by_offset() 152
6.19.1.3 dwarf_dealloc_macro_context() 152

6.19.2 Getting Macro Unit Header Data .. 156
6.19.2.1 dwarf_macro_context_head() 156
6.19.2.2 dwarf_macro_operands_table() 157

6.19.3 Getting Individual Macro Operations Data 158
6.19.3.1 dwarf_get_macro_op() .. 158
6.19.3.2 dwarf_get_macro_defundef() 159
6.19.3.3 dwarf_get_macro_startend_file() 160
6.19.3.4 dwarf_get_macro_import() 160

6.20 Macro Information Operations (DWARF2, DWARF3,
DWARF4) .. 161
6.20.1 General Macro Operations .. 161

6.20.1.1 dwarf_find_macro_value_start() 161
6.20.2 Debugger Interface Macro Operations 161
6.20.3 Low Lev el Macro Information Operations 161

6.20.3.1 dwarf_get_macro_details() 161
6.21 Low Lev el Frame Operations ... 164

6.21.1 dwarf_get_frame_section_name() 167
6.21.2 dwarf_get_frame_section_name_eh_gnu() 167
6.21.3 dwarf_get_fde_list() .. 168
6.21.4 dwarf_get_fde_list_eh() .. 170
6.21.5 dwarf_get_cie_of_fde() ... 172
6.21.6 dwarf_get_fde_for_die() ... 173
6.21.7 dwarf_get_fde_range() .. 173

vii

6.21.8 dwarf_get_cie_info() ... 174
6.21.9 dwarf_get_cie_index() .. 175
6.21.10 dwarf_get_fde_instr_bytes() ... 175
6.21.11 dwarf_get_fde_info_for_reg() .. 176
6.21.12 dwarf_get_fde_info_for_all_regs() 176
6.21.13 dwarf_fde_section_offset() ... 177
6.21.14 dwarf_cie_section_offset() .. 177
6.21.15 dwarf_set_frame_rule_table_size() 178
6.21.16 dwarf_set_frame_rule_initial_value() 178
6.21.17 dwarf_set_frame_cfa_value() ... 179
6.21.18 dwarf_set_frame_same_value() .. 179
6.21.19 dwarf_set_frame_undefined_value() 180
6.21.20 dwarf_set_default_address_size() 180
6.21.21 dwarf_get_fde_info_for_reg3() .. 180
6.21.22 dwarf_get_fde_info_for_reg3_b() 182
6.21.23 dwarf_get_fde_info_for_cfa_reg3() 183
6.21.24 dwarf_get_fde_info_for_cfa_reg3_b() 183
6.21.25 dwarf_get_fde_info_for_all_regs3() 184
6.21.26 dwarf_get_fde_n() ... 185
6.21.27 dwarf_get_fde_at_pc() .. 185
6.21.28 dwarf_expand_frame_instructions() 186
6.21.29 dwarf_get_fde_exception_info() ... 187

6.22 Location Expression Evaluation .. 187
6.22.1 Location List Internal-level Interface 188

6.22.1.1 dwarf_get_loclist_entry() 188
6.23 Abbreviations access .. 188

6.23.1 dwarf_get_abbrev() ... 188
6.23.2 dwarf_get_abbrev_tag() .. 189
6.23.3 dwarf_get_abbrev_code() ... 189
6.23.4 dwarf_get_abbrev_children_flag() 190
6.23.5 dwarf_get_abbrev_entry_b() ... 190
6.23.6 dwarf_get_abbrev_entry() ... 191

6.24 String Section Operations .. 191
6.24.1 dwarf_get_string_section_name() 191
6.24.2 dwarf_get_str() .. 192

6.25 String Offsets Section Operations .. 192
6.25.1 dwarf_open_str_offsets_table_access() 194
6.25.2 dwarf_close_str_offsets_table_access() 194
6.25.3 dwarf_next_str_offsets_table() ... 195
6.25.4 dwarf_str_offsets_value_by_index() 196

viii

6.25.5 dwarf_str_offsets_statistics() .. 196
6.26 Address Range Operations ... 197

6.26.1 dwarf_get_aranges_section_name() 197
6.26.2 dwarf_get_aranges() .. 197
6.26.3 dwarf_get_arange() ... 198
6.26.4 dwarf_get_cu_die_offset() .. 199
6.26.5 dwarf_get_arange_cu_header_offset() 199
6.26.6 dwarf_get_arange_info_b() ... 199
6.26.7 dwarf_get_arange_info() ... 200

6.27 General Low Lev el Operations .. 200
6.27.1 dwarf_get_offset_size() ... 200
6.27.2 dwarf_get_address_size() .. 200
6.27.3 dwarf_get_die_address_size() ... 201

6.28 Ranges Operations DWARF5 (.debug_rnglists) 201
6.28.1 Getting rnglists data for a DIE .. 201

6.28.1.1 dwarf_rnglists_get_rle_head() 204
6.28.1.2 dwarf_get_rnglist_head_basics() 205
6.28.1.3 dwarf_get_rnglists_entry_fields_a() 205
6.28.1.4 dwarf_get_rnglists_entry_fields() 207
6.28.1.5 dwarf_dealloc_rnglists_head() 207

6.28.2 Getting raw .debug_rnglists entries 207
6.28.2.1 dwarf_load_rnglists() .. 209
6.28.2.2 dwarf_get_rnglist_context_basics() 210
6.28.2.3 dwarf_get_rnglist_offset_index_value() 211
6.28.2.4 dwarf_get_rnglist_rle() ... 211

6.29 Ranges Operations DWARF3,4 (.debug_ranges) 212
6.29.1 dwarf_get_ranges_section_name() 212
6.29.2 dwarf_get_ranges() ... 213
6.29.3 dwarf_get_ranges_a() .. 213
6.29.4 dwarf_get_ranges_b() ... 213
6.29.5 dwarf_ranges_dealloc() ... 215

6.30 Gdb Index operations ... 215
6.30.1 dwarf_gdbindex_header() ... 216
6.30.2 dwarf_gdbindex_culist_array() ... 219
6.30.3 dwarf_gdbindex_culist_entry() ... 219
6.30.4 dwarf_gdbindex_types_culist_array() 220
6.30.5 dwarf_gdbindex_types_culist_entry() 220
6.30.6 dwarf_gdbindex_addressarea() ... 221
6.30.7 dwarf_gdbindex_addressarea_entry() 221
6.30.8 dwarf_gdbindex_symboltable_array() 222

ix

6.30.9 dwarf_gdbindex_symboltable_entry() 225
6.30.10 dwarf_gdbindex_cuvector_length() 225
6.30.11 dwarf_gdbindex_cuvector_inner_attributes() 226
6.30.12 dwarf_gdbindex_cuvector_instance_expand_value() 226
6.30.13 dwarf_gdbindex_string_by_offset() 227

6.31 GNU linking (.gnu_debuglink, .note.gnu.build-id) operations 227
6.31.1 dwarf_gnu_debuglink() ... 228
6.31.2 dwarf_add_debuglink_global_path() 231
6.31.3 dwarf_crc32() .. 232
6.31.4 dwarf_basic_crc32() .. 232

6.32 DWARF5 .debug_sup section access ... 232
6.32.1 dwarf_get_debug_sup() .. 232

6.33 Debug Fission (.debug_tu_index, .debug_cu_index) operations 233
6.33.1 Dwarf_Debug_Fission_Per_CU ... 234
6.33.2 dwarf_die_from_hash_signature() 235
6.33.3 dwarf_get_debugfission_for_die() 236
6.33.4 dwarf_get_debugfission_for_key() 236
6.33.5 dwarf_get_xu_index_header() .. 236
6.33.6 dwarf_get_xu_index_section_type() 238
6.33.7 dwarf_get_xu_header_free() ... 239
6.33.8 dwarf_get_xu_hash_entry() .. 239
6.33.9 dwarf_get_xu_section_names() .. 240
6.33.10 dwarf_get_xu_section_offset() ... 241

6.34 TA G ATTR etc names as strings .. 243
6.34.1 dwarf_get_ACCESS_name() .. 245
6.34.2 dwarf_get_AT_name() .. 245
6.34.3 dwarf_get_ATE_name() .. 245
6.34.4 dwarf_get_ADDR_name() .. 245
6.34.5 dwarf_get_ATCF_name() ... 245
6.34.6 dwarf_get_CHILDREN_name() ... 245
6.34.7 dwarf_get_children_name() .. 245
6.34.8 dwarf_get_CC_name() .. 245
6.34.9 dwarf_get_CFA_name() .. 245
6.34.10 dwarf_get_DS_name() .. 245
6.34.11 dwarf_get_DSC_name() ... 245
6.34.12 dwarf_get_EH_name() .. 245
6.34.13 dwarf_get_END_name() ... 246
6.34.14 dwarf_get_FORM_name() .. 246
6.34.15 dwarf_get_FRAME_name() ... 246
6.34.16 dwarf_get_ID_name() ... 246

x

6.34.17 dwarf_get_INL_name() .. 246
6.34.18 dwarf_get_LANG_name() .. 246
6.34.19 dwarf_get_LLE_name() .. 246
6.34.20 dwarf_get_LNE_name() ... 246
6.34.21 dwarf_get_LNS_name() .. 246
6.34.22 dwarf_get_MACINFO_name() ... 246
6.34.23 dwarf_get_MACRO_name() ... 246
6.34.24 dwarf_get_OP_name() .. 246
6.34.25 dwarf_get_ORD_name() ... 246
6.34.26 dwarf_get_TAG_name() ... 246
6.34.27 dwarf_get_VIRTUALITY_name() 247
6.34.28 dwarf_get_VIS_name() ... 247

6.35 Section Operations ... 247
6.35.1 dwarf_get_section_count() .. 247
6.35.2 dwarf_get_section_info_by_name() 247
6.35.3 dwarf_get_section_info_by_index() 248

6.36 Utility Operations ... 248
6.36.1 dwarf_errno() .. 248
6.36.2 dwarf_errmsg() .. 248
6.36.3 dwarf_errmsg_by_number() ... 249
6.36.4 dwarf_get_endian_copy_function() 249
6.36.5 dwarf_get_harmless_error_list() ... 249
6.36.6 dwarf_insert_harmless_error() .. 250
6.36.7 dwarf_set_harmless_error_list_size() 250
6.36.8 dwarf_dealloc() ... 253
6.36.9 dwarf_encode_leb128() .. 253
6.36.10 dwarf_encode_signed_leb128() .. 253

6.37 Finding Memory Leaks .. 253
6.37.1 Compiling libdwarf -DDEBUG=1 254
6.37.2 Making use of the output of -DDEBUG=1 254

xi

LIST OF FIGURES

Figure 1. Scalar Types ... 10

Figure 2. Error Indications ... 24

Figure 3. Example_dwarf_dealloc() .. 26

Figure 4. Example_dwarf_dealloc_die() ... 27

Figure 5. Example_dwarf_dealloc_attribute() 27

Figure 6. Example_dwarf_dealloc_error() .. 27

Figure 7. Example1 dwarf_attrlist() .. 28

Figure 8. Allocation/Deallocation Identifiers 32

Figure 9. Example2 dwarf_set_died_dbg() ... 40

Figure 10. Example3 dwarf_set_tied_dbg() obsolete 40

Figure 11. Example4 dwarf_siblingof() .. 58

Figure 12. Example5 dwarf_child() ... 59

Figure 13. Example6 dwarf_offdie_b() ... 60

Figure 14. Example7 dwarf_CU_dieoffset_given_die() 65

Figure 15. Example8 dwarf_attrlist() free ... 68

Figure 16. Exampleoffset_list dwarf_offset_list() free 72

Figure 17. Example Raw Loclist ... 85

Figure 18. Examplea dwarf_loclist() ... 103

Figure 19. Exampleb dwarf_loclist_from_expr() 104

Figure 20. Examplec dwarf_srclines_b() ... 108

Figure 21. Exampled dwarf_srclines() .. 116

Figure 22. Exampled dwarf_srcfiles() ... 118

Figure 23. Exampled dwarf_get_globals() .. 125

Figure 24. Exampled dwarf_get_pubtypes() 129

Figure 25. Exampleh dwarf_get_weaks() .. 132

xii

Figure 26. Examplei dwarf_get_weaks() obsolete 133

Figure 27. Examplej dwarf_get_funcs() .. 135

Figure 28. Examplek dwarf_get_funcs() obsolete 136

Figure 29. Examplel dwarf_get_types() .. 138

Figure 30. Examplel dwarf_get_types() obsolete 139

Figure 31. Examplen dwarf_get_vars() ... 141

Figure 32. Exampleo dwarf_get_vars() obsolete 142

Figure 33. Examplep5
dwarf_dealloc_macro_context() ... 152

Figure 34. Examplep2 dwarf_get_macro_details() 162

Figure 35. Frame Information Rule Assignments
MIPS ... 166

Figure 36. Frame Information Special Values any
architecture ... 166

Figure 37. Exampleq dwarf_get_fde_list() .. 168

Figure 38. Exampleqb dwarf_get_fde_list() obsolete 169

Figure 39. Exampler dwarf_get_fde_list_eh() 171

Figure 40. Examples
dwarf_expand_frame_instructions() 186

Figure 41. examplestringoffsets
dwarf_open_str_offsets_table_access() etc 192

Figure 42. Exampleu dwarf_get_aranges() .. 198

Figure 43. Example .debug_rnglist for attribute 203

Figure 44. Examplev dwarf_get_ranges_a() .. 207

Figure 45. Examplev dwarf_get_ranges_b() 214

Figure 46. Examplew dwarf_get_gdbindex_header() 217

Figure 47. Examplewgdbindex
dwarf_gdbindex_addressarea() .. 222

Figure 48. Examplex
dwarf_gdbindex_symboltable_array() 224

xiii

Figure 49. Example debuglink () ... 230

Figure 50. Exampley dwarf_get_xu_index_header() 238

Figure 51. Examplez dwarf_get_xu_hash_entry() 240

Figure 52. Exampleza dwarf_get_xu_section_names() 243

Figure 53. Examplezb dwarf_get_TAG_name() 244

Figure 54. Dwarf Error Codes ... 251

Figure 55. Dwarf 2 and later Error Codes ... 252

xiv

A Consumer Library Interface to DWARF

David Anderson

ABSTRACT

This document describes an interface to a library of functions to access DWARF
debugging information entries, DWARF line number information, and other
DWARF2/3/4/5 information).

There are a few sections which are SGI-specific (those are clearly identified in the
document).

Rev 3.17 7 November 2020

xv

